Advertisement

Metallurgist

, Volume 55, Issue 1–2, pp 123–130 | Cite as

Fracture of the materials and elements of steel structures

  • L. I. Gladshtein
Article
  • 73 Downloads

This article examines two of the six most common types of fracture of steel and steel structural elements: brittle fracture by cleavage and ductile fracture. The corresponding micromechanisms of fracture and the characteristic relief that is left on the fracture surface are also discussed. The most important and most interesting features of the behavior that the steel and the structural elements exhibit during service and fracture are noted. Among the topics here are a mechanical criterion for brittle fracture, rapid catastrophic ductile fracture, the participation of cleavage in the formation of lamellar cracks, and preventing the delayed fracture of high-strength bolts by altering the chemical composition of the steel.

Key words

ductile and brittle fracture strength ductility toughness anisotropy constant variable and local stress elastic plastic uniform and concentrated strain stress concentration strain concentration static dynamic variable and cyclic loads microstructure metallographic and crystallographic texture crystalline lattice defect dislocation weldability carbon equivalent crack 

References

  1. 1.
    H. Leibowitz (ed.), Fracture [Russian translation], Mir, Moscow (1973–1977).Google Scholar
  2. 2.
    Mechanics: Scientific Advances Abroad. Iss. 17: Fracture Mechanics. The Fracture of Materials [in Russian], Mir, Moscow (1979).Google Scholar
  3. 3.
    Ibid., Iss. 20.Google Scholar
  4. 4.
    J. F. Knott, Fundamentals of Fracture Mechanics [Russian translation], Mir, Moscow (1980).Google Scholar
  5. 5.
    M. A. Shtremel (ed.), Atomic Mechanism of Fracture [Russian translation], Metallurgiya, Moscow (1963).Google Scholar
  6. 6.
    P. B. Mikhailov-Mikheev, Thermal Embrittlement of Steel [in Russian], Mashgiz, Leningrad (1956).Google Scholar
  7. 7.
    V. M. Goritskii, Thermal Embrittlement of Steels [in Russian], Metallurgizdat, Moscow (2007).Google Scholar
  8. 8.
    P. D. Odesskii and I. I. Vedyakov, Impact Toughness of Steels for Metal Structures [in Russian], Intermet Engineering, Moscow (2003).Google Scholar
  9. 9.
    L. I. Gladshtein, V. M. Goritskii, A. I. Kovalev, and V. I. Sarak, “Effect of grain size on the size of the facets in transcrystalline cleavage,” Probl. Prochn., No. 3, 60–62 (1979).Google Scholar
  10. 10.
    V. M. Goritskii and D. P. Khromov, “Structure and quantitative fractographic analysis of brittle fractures of low-carbon and low-alloy steels,” Fiz. Met. Metalloved., 55, No. 6, 1169–1178 (1983).Google Scholar
  11. 11.
    V. M. Goritskii and D. P. Khromov, “Effect of test temperature on fractographic characteristics of the brittle fracture of low-carbon and low-alloy steels,” ibid., 58, No. 1, 154–163 (1984).Google Scholar
  12. 12.
    L. A. Kopelman, Resistance of Welded Joints to Brittle Fracture [in Russian], Mashinostroenie, Moscow (1978).Google Scholar
  13. 13.
    L. I. Gladshtein and N. P. Larionova, “Effect of ferrite grain size on characteristics of the deformation and fracture of structural steel,” Probl. Prochn., No. 7, 68–75 (1982).Google Scholar
  14. 14.
    L. I. Gladshtein, N. P. Larionova, and R. A. Milievskii, “On evaluating the cold resistance of steel based on results from the testing of specimens with an acute triangular notch,” PGS, No. 2, 26–28 (2008).Google Scholar
  15. 15.
    N. A. Makhutov, L. I. Gladstein, and Yu. M. Grachev, “Fracture of the thin-walled shell models under internal pressure loading,” Probl. Prochn., No. 2, 3–9 (1976).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Melnikov Central Research and Design Institute of Steel Structures (TsNIIPSK)MoscowRussia

Personalised recommendations