Advertisement

Metallurgist

, 53:512 | Cite as

Determination of the energy parameters for the smelting of manganese ferroalloys with increases in the electrode gap and electrode spacing

  • A. P. Shkirmontov
Article

An increase in the power of ferroalloy furnaces also increases the current in the electrodes and, to a lesser extent, increases furnace voltage as well. There is a deterioration in the power factor and electrical efficiency in this case, the reason being a decrease in the resistance of the bath. Studies have shown that the power of furnaces used to make manganese ferroalloys can be increased by increasing bath resistance and voltage if the spacing of the electrodes and the distance between them and the bath are also both increased. These changes will improve the energy parameters of the smelting operation.

Key words

ferroalloy furnace diameter of electrode spacing of electrodes electrode gap 

References

  1. 1.
    A. P. Shkirmontov, “Analyzing the performance of electric furnaces and developing regimes for the production of silicomanganese with a larger-than-normal electrode gap,” Elektroobor.: Ekspl. Remont, N. 6, 50–57 (2009).Google Scholar
  2. 2.
    A. P. Shkirmontov, “Comprehensive evaluation of the technological and energy parameters of electric ore-smelting furnaces for making ferroalloys,” Glavnyi Energetik, No. 4, 76–78 (2009).Google Scholar
  3. 3.
    Ya. B. Dantsis, Methods for Performing Electrotechnical Calculations for Ore-Smelting Furnaces [in Russian], Energiya, Leningrad (1973).Google Scholar
  4. 4.
    A. D. Svenchanskii and M. Ya. Smelyanskii, Industrial Electric Furnaces [in Russian], Part 2, Energiya, Moscow (1970).Google Scholar
  5. 5.
    S. I. Khitrik, M. I. Gasik, and A. G. Kucher, Electrometallurgy of Manganese Ferroalloys [in Russian], Tekhnika, Kiev (1971).Google Scholar
  6. 6.
    B. I. Emlin and M. I. Gasik, Handbook of Electrothermal Processes [in Russian], Metallurgiya (1978).Google Scholar
  7. 7.
    “Electric FeMn furnaces,” Japan Steel Notes, 14, No. 3, 3 (1974).Google Scholar
  8. 8.
    V. T. Babenko, O. F. Shestakovskii, V. S. Rudich, et al., “Design and construction of equipment used in ferroalloys production,” Stal, No. 1, 44–45 (1978).Google Scholar
  9. 9.
    M. I. Gasik, N. P. Lyakishev, and B. I. Emlin, Theory and Technology of Ferroalloys Production [in Russian], Metallurgiya, Moscow (1988).Google Scholar
  10. 10.
    M. I. Gasik, Self-Baking Electrodes for Electric Ore-Smelting Furnaces [in Russian], Metallurgiya, Moscow (1976).Google Scholar
  11. 11.
    R. G. Ratzlaff, “Construction and operation of a new ferromanganese facility,” Proc. of Electric Furnace Conf. AIME, Manchester (1975), Vol. 32, pp. 183–186.Google Scholar
  12. 12.
    A. P. Shkirmontov and E. N. Voskoboinikova, Increasing the Resistance of the Bath of a Silicomanganese Furnace: Depos. Manuscr. – TsNIIinform i Tekhniko-Ekon. Issled. Chernoi Metallurgii, Moscow (1987), depos. in Chermetinformatsiya Institute 01.18.88, No. 4319-chm.Google Scholar
  13. 13.
    G. S. Andryukhin, V. I. Gusev, Yu. M. Bogutskii, et al., “Structure of the working space and technological aspects of silicomanganese production,” Stal, No. 4, 327–330 (1976).Google Scholar
  14. 14.
    A. P. Shkirmontov, “Production of high-carbon ferromanganese with a higher-than-normal voltage,” Izv. Vyssh. Uchebn. Zaved. Chern. Metall., No. 1, 152 (1982).Google Scholar
  15. 15.
    M. A. Ryss, Production of Ferroalloys [Russian translation], Metallurgiya, Moscow (1985).Google Scholar
  16. 16.
    R. Durer and G. Folkert, The Metallurgy of Ferroalloys [Russian translation], Metallurgiya, Moscow (1976).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.ID PanoramaMoscowRussia

Personalised recommendations