Advertisement

Metallurgist

, Volume 52, Issue 9–10, pp 511–516 | Cite as

Fine microstructure of wire rods manufactured from Sv-08G2S high-plasticity steel

  • A. M. Nesterenko
  • A. B. Sychkov
  • S. Yu. Zhukova
  • V. I. Sukhomlin
Article
  • 65 Downloads

This paper presents the results of transmission-electron-microscope and scanning-electron-microscope studies of the fine structure of wire rod made from Sv-08G2S silicon-manganese welding steel, including electron microscope images used to identify the structural components of the wire-rod metal and determine the dislocation density. The wire-rod microstructure was compared against that obtained when a new, optimized process was developed for heat-treatment of the wire rod in a Stelmor line. We show that the wire rod has the highest ductility when the production flow includes long-term holding of the wire-rod coils under quasi-isothermal conditions (under insulated hoods with a cooling rate 0.2–0.3°C/sec) in such a way as to minimize the number of bainite-martensite areas when the structureless martensite (hardenite) content does not exceed 5%. The resulting process and optimized microstructure enabled us to achieve a relative deformation of 98% when direct-drawing wire rod from Sv-08G2S alloy steel.

Key words

welding rod steel microstructure heat-treatment modes highly drawable metal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Parusov, A. M. Nesterenko, A. B. Sychkov, and M. A. Zhigarev, ”Structure and properties of rolled wire made from boron-containing steels and intended for production of welding products,” Metallurg. Gornorudn. Prom., No. 3, 48–51 (2000).Google Scholar
  2. 2.
    V. V. Parusov, A. B. Sychkov, V. A. Lutsenko, and E. V. Parusov, “Thermomechanical treatment for softening rolled carbon-steel products,” Metallurg. Gornorudn. Prom., No. 6, 54–57 (2003).Google Scholar
  3. 3.
    V. V. Parusov, A. B. Sychkov, S. Yu. Zhukova, et al., “Effect of chemical composition and process factors on mechanical properties of rolled wire made from Sv-08G2S steel,” Metallurg. Gornorudn. Prom., No. 4, 68–71 (2005).Google Scholar
  4. 4.
    V. V. Parusov, A. B. Sychkov, O. V. Parusov, et al., “Correlation between heat treatment modes and the structure and properties of Sv-08G2S wire rod,” Teor. Prakt. Metal., No. 6 (55), pp. 59–63 (2006).Google Scholar
  5. 5.
    V. V. Parusov, A. B. Sychkov, and S. Yu. Zhukova, “Study of root causes of failure during drawing of Sv-08G2S steel wire and wire rod,” Metallurg. Gornorudn. Prom., No. 6, 60–63 (2006).Google Scholar
  6. 6.
    V. V. Parusov, A. B. Sychkov, I. V. Derevyanchenko, et al., “High-deformability wire rod made of steel Sv-08G2S,” Metallurg, No. 2, 64–70 (2007); Metallurgist, 51, No. 1–2, 121–130 (2007).Google Scholar
  7. 7.
    V. V. Parusov, A. B. Sychkov, and S. Yu. Zhukova, “Chemical and structural inhomogeneity in wire rod of continuous-cast Sv-08G2S electric steel,” in: Stroit., Materialoved., Mashinostr., PGASA, Dnepropetrovsk, No. 41, Part 2, 30–33 (2007).Google Scholar
  8. 8.
    A. B. Sychkov, Development of Integrated Manufacturing Processes for High-Performance Rolled Wire from Continuous-Cast Small-Cross-Section Blanks with Higher Concentrations of Non-Ferrous Metals and Nitrogen, Abstract of Dissertation for Doctorate in Engineering Sciences (May 16, 2001 and May 16, 2002), Minsk (2005).Google Scholar
  9. 9.
    A. B. Sychkov, N. A. Bogdanov, V. V. Parusov, et al., “Modernization of equipment and improvement of processes for production of high-quality rolled stock at the Moldavian Metallurgical Plant,” Metallurg. Gornorudn. Prom., No. 8/9, 306–313 (2002).Google Scholar
  10. 10.
    V. V. Parusov, A. B. Sychkov, S. Yu. Zhukova, et al., “Mathematical modeling of the mechanical properties of Sv-08G2S steel wire rod,” in: Stroit., Materialoved., Mashinostr., PGASA, Dnepropetrovsk, No. 36, Part 2, 20–26 (2006).Google Scholar
  11. 11.
    S. A. Golovanenko and N. M. Fonshtein, Two-Phase Low-Alloy Steels [in Russian], Metallurgiya, Moscow (1986), 207 pp.Google Scholar
  12. 12.
    A. S. Zavyalov, G. I. Teplukhin, and K. V. Gabeev, “Formation conditions and formation mechanism for structureless martensite (hardenite),” Metallov. Termich. Obrab. Met., No. 10, 11–12 (1979).Google Scholar
  13. 13.
    K. W. Andrews, D. J. Dyson, and S. R. Keown, Interpretation of Electron Diffraction Patterns [Russian translation], Mir, Moscow (1971).Google Scholar
  14. 14.
    G. V. Kurdyumov, A. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel, Nauka, Moscow (1977), 236 pp.Google Scholar
  15. 15.
    V. I. Bol’shakov, G. D. Sukhomlin, and N. E. Pogrebnaya, Structural Atlas of Metals and Alloys, GAUDEAMUS, Dnepropetrovsk (2001), 114 pp.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • A. M. Nesterenko
    • 1
  • A. B. Sychkov
    • 2
  • S. Yu. Zhukova
    • 2
  • V. I. Sukhomlin
    • 3
  1. 1.Institute for Ferrous MetallurgyNational Academy of Sciences of UkraineDnepropetrovskUkraine
  2. 2.Moldavian Metallurgical PlantRybnitsaMoldova
  3. 3.Dneprodzerzhinsk State Technical UniversityDneprodzerzhinskUkraine

Personalised recommendations