, Volume 51, Issue 11–12, pp 631–636 | Cite as

Effect of mechanical activation of Ni-Fe-NaCl powder charges in liquid media on the structure and properties of high-porosity materials

  • Yu. G. Dorofeev
  • S. N. Sergeenko
  • R. V. Kolomiets
  • L. A. Shilkina
  • S. I. Shevtsova


It has been established that the time of activation in liquid media (LMA) and the iron content of the charge are of decisive importance in determining the porosity of sintered materials. The authors determined the critical time of treatment for a charge inside a mill (1.5 ksec), this length of treatment ensuring that the transition from LMA to mechanical activation takes place. They also determined the optimum values for the process parameters, making it possible to obtain sintered high-porosity materials (HPM) with the porosity P = 64%.


Mechanical Activation Metal Matrix Aluminum Powder Semifinished Product Coherent Scattering Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. G. Dorofeev, S. N. Sergeenko, and R. V. Kolomiets, “Aspects of the consolidation process in the formation and sintering of materials based on an Ni-Fe powder charge activated by mechano-chemical means,” Fiz. Khim. Obrab. Mater., No. 2, 65–69 (2007).Google Scholar
  2. 2.
    Yu. G. Dorofeev, E. N. Bezborodov, and S.N. Sergeenko, “Effect of the kinetics of mechano-chemical activation of aluminum powders on processes used for hot final consolidation,” ibid., No. 4, 79–81 (2002).Google Scholar
  3. 3.
    V. V. Skorokhod, Yu. M. Solonin, and I. V. Uvarova, Chemical, Diffusional, and Rheological Processes in Powder Materials Technology [in Russian], Naukova Dumka, Kiev (1990).Google Scholar
  4. 4.
    G. S. Khodakov, Physics of Comminution [in Russian], Nauka, Moscow (1972).Google Scholar
  5. 5.
    V. A. Ivensen, Phenomenology of Sintering [in Russian], Metallurgiya, Moscow (1985).Google Scholar
  6. 6.
    V. P. Nagornov, “Analytical determination of the parameters of the substructure of deformed polycrystals in an x-ray-based method of approximation with the use of Cauchy functions. I,” in: Instruments and Methods Used in x-Ray Analysis: Symposium, Leningrad (1982), pp. 67–71.Google Scholar
  7. 7.
    Yu. G. Dorofeev, E. N. Bezborodov, and S. N. Sergeenko, “Kinetics of the mechano-chemical activation of a powder charge based on aluminum in a saturated solution of orthoboric acid,” Fiz. Khim. Obrab. Mater., No. 3, 51–54 (2002).Google Scholar
  8. 8.
    Yu. P. Butyavin, Advances in Colloid Chemistry and Physicochemical Mechanics [in Russian], Moscow (1992), pp. 174–184.Google Scholar
  9. 9.
    Yu. G. Dorofeev, S. N. Sergeenko, and S. V. Gritsenko, “Modeling the activation of powder materials in an attritor,” in: Principles of Machine Design: Symposium, Novocherk. Gos. Tekn. Univ., Novocherkassk (1994), pp. 85–89.Google Scholar
  10. 10.
    Yu. G. Dorofeev, S. N. Sergeenko, and M. V. Kirsanov, “Study of the comminution of a metal-glass system based on a charge of high-manganese steel 110G13,” Izv. Vyssh. Uchebn. Zaved. Tekh. Nauki, Sev.-Kovk Region, No. 4, 49–53 (2000).Google Scholar
  11. 11.
    E. G. Avvakumov, Mechanical Methods of Activation in Chemical Processes [in Russian], Nauka, Novosibirsk (1986).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Yu. G. Dorofeev
    • 1
  • S. N. Sergeenko
    • 1
  • R. V. Kolomiets
    • 1
  • L. A. Shilkina
    • 1
  • S. I. Shevtsova
    • 1
  1. 1.South-Russian State Technical University (NPI)Novocherkassk

Personalised recommendations