Controlling the natural convection flow through a flexible baffle in an L-shaped enclosure

Abstract

The free convection flow through a flexible baffle in an L-shaped enclosure has been numerically analyzed. The governing equations are introduced in an Arbitrary Lagrangian–Eulerian moving mesh frame. The full governing equations respect to boundary conditions were solved numerically using FEM. A grid-independent test was performed to ensure the accuracy of the results, and the results of the numerical solver are compared with previous works. The influence of the dimensionless parameters, including Rayleigh number, the elasticity modulus and the length of the flexible baffle investigated on the flow and heat transfer. Results indicate that a stiffer baffle tends to resist the fluid flow and inhibits convective heat transfer. For a higher value of Ra, a larger baffle results in more resistance to the flow and inhibits heat transfer, while, at the same time, increases the stress over the baffle.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Abbreviations

g :

Gravity-constant vector

L :

Height of the cavity

W :

Width of the cavity

B :

Length of the flexible baffle

E :

Young’s modulus in dimensional form

d s :

Vector of displacement

f :

Frequency

F v :

Vector of body force

E τ :

Non-dimensional form of the elasticity modulus

Pr :

Prandtl number

P :

Fluid pressure

k :

Thermal conductivity

t :

Dimensional time

Ra :

Thermal Rayleigh number

w :

The vector of velocity for the mesh motion

T :

Temperature

u :

Velocity in a vector form

y :

Cartesian coordinate in y direction

x :

Cartesian coordinate in x direction

ρ :

Density

ν :

Poisson’s ratio

σ :

Stress tensor, von Mises stress

τ :

Non-dimensional time

ρ R :

The ratio of the fluid’s density to the structure’s density

β :

Volumetric thermal expansion coefficient

μ :

Dynamic viscosity

α :

Thermal diffusivity

h :

Hot temperature

av :

Average

s :

Flexible baffle

f :

Fluid

c :

Cold temperature

p :

Membrane partition

*:

The parameters in a dimensional form

References

  1. 1.

    Shi X, Khodadadi J (2005) Periodic state of fluid flow and heat transfer in a lid-driven cavity due to an oscillating thin fin. Int J Heat Mass Transf 48(25–26):5323–5337

    MATH  Google Scholar 

  2. 2.

    Shi X, Khodadadi J (2004) Fluid flow and heat transfer in a lid-driven cavity due to an oscillating thin fin: transient behavior. J Heat Transf 126(6):924–930

    Google Scholar 

  3. 3.

    Jamesahar E, Ghalambaz M, Chamkha AJ (2016) Fluid–solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal-conductive flexible diagonal partition. Int J Heat Mass Transf 100:303–319

    Google Scholar 

  4. 4.

    Gomes JP, Lienhart H (2013) Fluid–structure interaction-induced oscillation of flexible structures in laminar and turbulent flows. J Fluid Mech 715:537–572

    ADS  MATH  Google Scholar 

  5. 5.

    Al-Amiri A, Khanafer K (2011) Fluid–structure interaction analysis of mixed convection heat transfer in a lid-driven cavity with a flexible bottom wall. Int J Heat Mass Transf 54(17–18):3826–3836

    MATH  Google Scholar 

  6. 6.

    Soti AK, Bhardwaj R, Sheridan J (2015) Flow-induced deformation of a flexible thin structure as manifestation of heat transfer enhancement. Int J Heat Mass Transf 84:1070–1081

    Google Scholar 

  7. 7.

    Sabbar WA, Ismael MA, Almudhaffar M (2018) Fluid-structure interaction of mixed convection in a cavity-channel assembly of flexible wall. Int J Mech Sci 149:73–83

    Google Scholar 

  8. 8.

    Joshi RU, Soti AK, Bhardwaj R (2015) Numerical study of heat transfer enhancement by deformable twin plates in laminar heated channel flow. Comput Thermal Sci Int J 7:5–6

    Google Scholar 

  9. 9.

    Park SG, Chang CB, Kim B, Sung HJ (2017) Simulation of fluid-flexible body interaction with heat transfer. Int J Heat Mass Transf 110:20–33

    Google Scholar 

  10. 10.

    Alsabery A, Sheremet M, Ghalambaz M, Chamkha A, Hashim I (2018) Fluid–structure interaction in natural convection heat transfer in an oblique cavity with a flexible oscillating fin and partial heating. Appl Thermal Eng 145:80–97

    Google Scholar 

  11. 11.

    Alsabery A, Selimefendigil F, Hashim I, Chamkha A, Ghalambaz M (2019) Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder. Int J Heat Mass Transf 140:331–345

    Google Scholar 

  12. 12.

    Mehryan S, Chamkha A, Ismael M, Ghalambaz M (2017) Fluid–structure interaction analysis of free convection in an inclined square cavity partitioned by a flexible impermeable membrane with sinusoidal temperature heating. Meccanica 52(11–12):2685–2703

    MathSciNet  Google Scholar 

  13. 13.

    Chamkha AJ, Miroshnichenko IV, Sheremet MA (2018) Unsteady conjugate natural convective heat transfer and entropy generation in a porous semicircular cavity. J Heat Transf 140(6):062501

    Google Scholar 

  14. 14.

    Chamkha AJ, Miroshnichenko IV, Sheremet MA (2017) Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity. J Thermal Sci Eng Appl 9(4):041004

    Google Scholar 

  15. 15.

    Tayebi T, Chamkha AJ (2019) Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. Int J Numer Methods Heat Fluid Flow 30(3):1115–1136

    Google Scholar 

  16. 16.

    Kumar B, Seth G, Nandkeolyar R, Chamkha A (2019) Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid. Int J Thermal Sci 146:106101

    Google Scholar 

  17. 17.

    Dogonchi A, Armaghani T, Chamkha AJ, Ganji D (2019) Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arabian J Sci Eng 44(9):7919–7931

    Google Scholar 

  18. 18.

    Alsabery A, Mohebbi R, Chamkha A, Hashim I (2019) Impacts of magnetic field and non-homogeneous nanofluid model on convective heat transfer and entropy generation in a cavity with heated trapezoidal body. J Therm Anal Calorim 138(2):1371–1394

    Google Scholar 

  19. 19.

    Sardari PT, Babaei-Mahani R, Giddings D, Yasseri S, Moghimi M, Bahai H (2020) Energy recovery from domestic radiators using a compact composite metal Foam/PCM latent heat storage. J Clean Prod 257:120504

    Google Scholar 

  20. 20.

    Shahsavar A, Goodarzi A, Mohammed HI, Shirneshan A, Talebizadehsardari P (2020) Thermal performance evaluation of non-uniform fin array in a finned double-pipe latent heat storage system. Energy 193:116800

    Google Scholar 

  21. 21.

    Shahsavar A, Khosravi J, Mohammed HI, Talebizadehsardari P (2020) Performance evaluation of melting/solidification mechanism in a variable wave-length wavy channel double-tube latent heat storage system. J Energy Storage 27:101063

    Google Scholar 

  22. 22.

    Mahdi JM, Mohammed HI, Hashim ET, Talebizadehsardari P, Nsofor EC (2020) Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system. Appl Energy 257:113993

    Google Scholar 

  23. 23.

    Sardari PT, Grant D, Giddings D, Walker GS, Gillott M (2019) Composite metal foam/PCM energy store design for dwelling space air heating. Energy Convers Manag 201:112151

    Google Scholar 

  24. 24.

    Sardari PT, Giddings D, Grant D, Gillott M, Walker GS (2020) Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit. Renew Energy 148:987–1001

    Google Scholar 

  25. 25.

    Arshad A, Jabbal M, Sardari PT, Bashir MA, Faraji H, Yan Y (2020) Transient simulation of finned heat sinks embedded with PCM for electronics cooling. Therm Sci Eng Prog 18:100520

    Google Scholar 

  26. 26.

    Selimefendigil F, Öztop HF (2020) Control of natural convection in a CNT-water nanofluid filled 3D cavity by using an inner T-shaped obstacle and thermoelectric cooler. Int J Mech Sci 169:105104

    Google Scholar 

  27. 27.

    Ahmed SY, Ali FH, Hamzah HK (2018) Heatlines visualization of natural convection in trapezoidal cavity filled with nanofluid and divided by porous medium partition. Comput Fluids. https://doi.org/10.1016/j.compfluid.2018.12.004

    Article  Google Scholar 

  28. 28.

    Armaghani T, Kasaeipoor A, Izadi M, Pop I (2018) MHD natural convection and entropy analysis of a nanofluid inside T-shaped baffled enclosure. Int J Numer Methods Heat Fluid Flow 28(12):2916–2941

    Google Scholar 

  29. 29.

    Esfe MH, Arani AAA, Yan W-M, Aghaei A (2017) Natural convection in T-shaped cavities filled with water-based suspensions of COOH-functionalized multi walled carbon nanotubes. Int J Mech Sci 121:21–32

    Google Scholar 

  30. 30.

    Morsli S, Sabeur A, El Ganaoui M (2017) Influence of aspect ratio on the natural convection and entropy generation in rectangular cavities with wavy-wall. Energy Proc 139:29–36

    Google Scholar 

  31. 31.

    Li Z, Barnoon P, Toghraie D, Dehkordi RB, Afrand M (2019) Mixed convection of non-Newtonian nanofluid in an H-shaped cavity with cooler and heater cylinders filled by a porous material: two phase approach. Adv Powder Technol 30(11):2666–2685

    Google Scholar 

  32. 32.

    Miroshnichenko IV, Sheremet MA, Oztop HF, Al-Salem K (2016) MHD natural convection in a partially open trapezoidal cavity filled with a nanofluid. Int J Mech Sci 119:294–302

    Google Scholar 

  33. 33.

    Mohebbi R, Mehryan S, Izadi M, Mahian O (2019) Natural convection of hybrid nanofluids inside a partitioned porous cavity for application in solar power plants. J Therm Anal Calorim 137(5):1719–1733

    Google Scholar 

  34. 34.

    Selimefendigil F, Öztop HF (2019) MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation. Phys A Stat Mech Appl 534:122144

    MathSciNet  Google Scholar 

  35. 35.

    Mahmoodi M (2011) Numerical simulation of free convection of a nanofluid in L-shaped cavities. Int J Therm Sci 50(9):1731–1740

    Google Scholar 

  36. 36.

    Ma Y, Mohebbi R, Rashidi M, Yang Z (2018) Simulation of nanofluid natural convection in a U-shaped cavity equipped by a heating obstacle: effect of cavity’s aspect ratio. J Taiwan Inst Chem Eng 93:263–276

    Google Scholar 

  37. 37.

    Fard AH, Hooshmand P, Mohammaei M, Ross D (2019) Numerical study on free convection in a U-shaped CuO/water nanofluid-filled cavity with different aspect ratios using double-MRT lattice Boltzmann. Therm Sci Eng Prog 14:100373

    Google Scholar 

  38. 38.

    Chamkha A, Ismael M, Kasaeipoor A, Armaghani T (2016) Entropy generation and natural convection of CuO-water nanofluid in C-shaped cavity under magnetic field. Entropy 18(2):50

    ADS  Google Scholar 

  39. 39.

    Zargartalebi H, Ghalambaz M, Chamkha A, Pop I, Nezhad AS (2018) Fluid–structure interaction analysis of buoyancy-driven fluid and heat transfer through an enclosure with a flexible thin partition. Int J Numer Methods Heat Fluid Flow 28:2072–2088

    Google Scholar 

  40. 40.

    Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, Hoboken

    Google Scholar 

  41. 41.

    Zhang Q, Hisada T (2001) Analysis of fluid–structure interaction problems with structural buckling and large domain changes by ALE finite element method. Comput Methods Appl Mech Eng 190(48):6341–6357

    ADS  MATH  Google Scholar 

  42. 42.

    De Los Reyes JC, González Andrade S (2012) A combined BDF-semismooth Newton approach for time-dependent Bingham flow. Numer Methods Partial Differ Equ 28(3):834–860

    MathSciNet  Google Scholar 

  43. 43.

    Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    Google Scholar 

  44. 44.

    Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener Comput Syst 20(3):475–487

    MATH  Google Scholar 

  45. 45.

    Verbosio F, De Coninck A, Kourounis D, Schenk O (2017) Enhancing the scalability of selected inversion factorization algorithms in genomic prediction. J Comput Sci 22:99–108

    Google Scholar 

  46. 46.

    Calcagni B, Marsili F, Paroncini M (2005) Natural convective heat transfer in square enclosures heated from below. Appl Therm Eng 25(16):2522–2531

    Google Scholar 

  47. 47.

    Xu F, Patterson JC, Lei C (2009) Heat transfer through coupled thermal boundary layers induced by a suddenly generated temperature difference. Int J Heat Mass Transf 52(21–22):4966–4975

    MATH  Google Scholar 

  48. 48.

    Küttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43(1):61–72

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support received from the Malaysian Ministry of Education research Grant FRGS/1/2019/STG06/UKM/01/2.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Chamkha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghalambaz, M., Mehryan, S.A.M., Alsabery, A.I. et al. Controlling the natural convection flow through a flexible baffle in an L-shaped enclosure. Meccanica 55, 1561–1584 (2020). https://doi.org/10.1007/s11012-020-01194-2

Download citation

Keywords

  • Natural convection heat transfer
  • Flexible-baffle
  • Arbitrary Lagrangian–Eulerian (ALE)