On the two-potential constitutive modeling of dielectric elastomers

Abstract

This work lays out the two-potential framework for the constitutive modeling of dielectric elastomers. After its general presentation, where the constraints imposed by even electromechanical coupling, material frame indifference, material symmetry, and entropy imbalance are all spelled out, the framework is utilized to put forth a specific constitutive model for the prominent class of isotropic incompressible dielectric elastomers. The model accounts for the non-Gaussian elasticity and electrostriction typical of such materials, as well as for their deformation-enhanced shear thinning due to viscous dissipation and their time-dependent polarization due to electric dissipation. The key theoretical and practical features of the model are discussed, with special emphasis on its specialization in the limit of small deformations and moderate electric fields. The last part of this paper is devoted to the deployment of the model to fully describe the electromechanical behavior of a commercially significant dielectric elastomer, namely, the acrylate elastomer VHB 4910 from 3M.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    In this paper, for definiteness, we restrict attention to the Lagrangian electric field \({\mathbf{E}}\) as the independent electric variable.

  2. 2.

    Numerical experiments have shown that this scheme remains stable and accurate over very long times, while, at the same time, it also outperforms in terms of computational cost all of the various implicit methods that we have examined.

References

  1. 1.

    Amin AFMS, Lion A, Sekita S, Okui Y (2006) Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: experimental identification and numerical verification. Int J Plast 22:1610–1657

    MATH  Article  Google Scholar 

  2. 2.

    Ask A, Menzel A, Ristinmaa M (2012) Electrostriction in electro-viscoelastic polymers. Mech Mater 50:9–21

    Article  Google Scholar 

  3. 3.

    Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R (2014) 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv Mater 26:149–162

    Article  Google Scholar 

  4. 4.

    Böttcher CJF, Bordewijk P (1978) Theory of electric polarization, dielectrics in time-dependent fields, vol II. Elsevier, Amsterdam

    Google Scholar 

  5. 5.

    Büschel A, Klinkel S, Wagner W (2013) Dielectric elastomers—numerical modelling of nonlinear visco-electroelasticity. Int J Numer Methods Eng 93:834–856

    MATH  Google Scholar 

  6. 6.

    Carpi F, De Rossi D, Pelrine R, Sommer-Larsen P (2008) Dielectric elastomers as electromechanical transducers. Elsevier, Amsterdam

    Google Scholar 

  7. 7.

    Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Phys Chem 9:341–351

    Article  Google Scholar 

  8. 8.

    Debye P (1929) Polar molecules. The Chemical Catalog Company Inc, New York

    Google Scholar 

  9. 9.

    Dorfmann A, Ogden RW (2005) Nonlinear electroelasticity. Acta Mech 174:167–183

    MATH  Article  Google Scholar 

  10. 10.

    Foo CC, Cai S, Koh SJA, Bauer S, Suo Z (2012) Model of dissipative dielectric elastomers. J Appl Phys 111:034102

    ADS  Article  Google Scholar 

  11. 11.

    Fosdick R, Tang H (2007) Electrodynamics and thermomechanics of material bodies. J Elast 88:255–297

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Gent AN (1962) Relaxation processes in vulcanized rubber I: relation among stress relaxation, creep, recovery, and hysteresis. J Appl Polym Sci 6:433–441

    Article  Google Scholar 

  13. 13.

    Germain P, Nguyen QS, Suquet P (1983) Continuum thermodynamics. J Appl Mech 50:1010–1020

    MATH  Article  Google Scholar 

  14. 14.

    Gross B (1953) Mathematical structure of the theories of viscoelasticity. Hermann, Paris

    Google Scholar 

  15. 15.

    Gupta U, Qin L, Wang Y, Godaba H, Zhu J (2019) Soft robots based on dielectric elastomer actuators: a review. Smart Mater Struct 28:103002

    ADS  Article  Google Scholar 

  16. 16.

    Halphen B, Nguyen QS (1975) Sur les matériaux standard généralisés. J Méc 14:39–63

    MATH  Google Scholar 

  17. 17.

    Havriliak S, Negami S (1966) A complex plane analysis of \(\alpha \)-dispersions in some polymer systems. J Polym Sci C 14:99–117

    Article  Google Scholar 

  18. 18.

    Hong W (2011) Modeling viscoelastic dielectrics. J Mech Phys Solids 59:637–650

    ADS  MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Hossain M, Vu DK, Steinmann P (2012) Experimental study and numerical modelling of VHB 4910 polymer. Comput Mater Sci 59:65–74

    Article  Google Scholar 

  20. 20.

    Hossain M, Vu DK, Steinmann P (2015) A comprehensive characterization of the electromechanically coupled properties of VHB 4910 polymer. Arch Appl Mech 85:523–537

    Article  Google Scholar 

  21. 21.

    Khan AS, Lopez-Pamies O (2002) Time and temperature dependent response and relaxation of a soft polymer. Int J Plast 18:1359–1372

    Article  Google Scholar 

  22. 22.

    Kofod G, Sommer-Larsen P, Kornbluh R, Pelrine R (2003) Actuation response of polyacrylate dielectric elastomers. J Intell Mater Syst Struct 14:787–793

    Article  Google Scholar 

  23. 23.

    Kremer F (2003) Schönhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  24. 24.

    Kumar A, Lopez-Pamies O (2016) On the two-potential constitutive modelling of rubber viscoelastic materials. Comptes Rendus Mecanique 344:102–112

    ADS  Article  Google Scholar 

  25. 25.

    Lawson JD (1966) An order five Runge–Kutta process with extended region of stability. SIAM J Numer Anal 3:593–597

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Lefèvre V, Lopez-Pamies O (2014) The overall elastic dielectric properties of a suspension of spherical particles in rubber: an exact explicit solution in the small-deformation limit. J Appl Phys 116:134106

    ADS  Article  Google Scholar 

  27. 27.

    Lefèvre V, Lopez-Pamies O (2017) Nonlinear electroelastic deformations of dielectric elastomer composites: I—ideal elastic dielectrics. J Mech Phys Solids 99:409–437

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    Lefèvre V, Lopez-Pamies O (2017) Nonlinear electroelastic deformations of dielectric elastomer composites: II—non-Gaussian elastic dielectrics. J Mech Phys Solids 99:438–470

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Lefèvre V, Danas K, Lopez-Pamies O (2017) A general result for the magnetoelastic response of isotropic suspensions of iron and ferrofluid particles in rubber, with applications to spherical and cylindrical specimens. J Mech Phys Solids 107:343–364

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Lefèvre V, Garnica A, Lopez-Pamies O (2019) A WENO finite-difference scheme for a new class of Hamilton–Jacobi equations in nonlinear solid mechanics. Comput Methods Appl Mech Eng 349:17–44

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Lopez-Pamies O (2010) A new \(I_1\)-based hyperelastic model for rubber elastic materials. C R Méc 338:3–11

    ADS  MATH  Article  Google Scholar 

  32. 32.

    Lopez-Pamies O (2014) Elastic dielectric composites: theory and application to particle-filled ideal dielectrics. J Mech Phys Solids 64:61–82

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    Maugin GA, Muschik W (1994) Thermodynamics with internal variables. Part II. Applications. J Non-Equilibrium Thermodyn 19:250–289

    ADS  MATH  Google Scholar 

  34. 34.

    McMeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech 72:581–590

    MATH  Article  Google Scholar 

  35. 35.

    Pao YH (1978) Electromagnetic forces in deformable continua. Mech Today 4:209–305

    MATH  Google Scholar 

  36. 36.

    Pei Q, Hu W, McCoul D, Biggs SJ, Stadler D, Carpi F (2016) Dielectric elastomers as EAPs: applications. Springer International Publishing, Berlin

    Google Scholar 

  37. 37.

    Qiang J, Chen H, Li B (2012) Experimental study on the dielectric properties of polyacrylate dielectric elastomer. Smart Mater Struct 21:025006

    ADS  Article  Google Scholar 

  38. 38.

    Saxena P, Vu DK, Steinmann P (2014) On rate-dependent dissipation effects in electro-elasticity. Int J Non-Linear Mech 62:1–11

    Article  Google Scholar 

  39. 39.

    Sidoroff F (1974) Un modèle viscoélastique non linéaire avec configuration intermédiaire. J Méc 13:679–713

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Schröder J, Keip M-A (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50:229–244

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Spinelli SA, Lefèvre V, Lopez-Pamies O (2015) Dielectric elastomer composites: a general closed-form solution in the small-deformation limit. J Mech Phys Solids 83:263–284

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Stratton JS (1941) Electromagnetic theory. McGraw-Hill, New York

    Google Scholar 

  43. 43.

    Suo Z, Zhao X, Greene WH (2008) A nonlinear field theory of deformable dielectrics. J Mech Phys Solids 56:467–486

    ADS  MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Tian L, Tevet-Deree L, deBotton G, Bhattacharya K (2012) Dielectric elastomer composites. J Mech Phys Solids 60:181–198

    ADS  MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Toupin RA (1956) The elastic dielectric. J Ration Mech Anal 5:849–915

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Vogel F, Göktepe S, Steinmann P, Kuhl E (2014) Modeling and simulation of viscous electro-active polymers. Eur J Mech A/Solids 48:112–128

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Wang S, Decker M, Henann DL, Chester SA (2016) Modeling of dielectric viscoelastomers with application to electromechanical instabilities. J Mech Phys Solids 95:213–229

    ADS  MathSciNet  Article  Google Scholar 

  48. 48.

    Wissler M, Mazza E (2007) Electromechanical coupling in dielectric elastomer actuators. Sens Actuators A Phys 138:384–393

    Article  Google Scholar 

  49. 49.

    Wu H, Huang Y, Xu F, Duan Y, Yin Z (2016) Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv Mater 28:9881–9919

    Article  Google Scholar 

  50. 50.

    Zener CM (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago

    Google Scholar 

  51. 51.

    Zhao X, Koh SJA, Suo Z (2011) Nonequilibrium thermodynamics of dielectric elastomers. Int J Appl Mech 3:203–217

    Article  Google Scholar 

  52. 52.

    Zhou J, Jiang L, Cai S (2020) Predicting the electrical breakdown strength of elastomers. Extreme Mech Lett 34:100583

    Article  Google Scholar 

  53. 53.

    Ziegler H (1958) An attempt to generalize Onsager’s principle, and its significance for rheological problems. Z Angew Math Phys 9b:748–763

  54. 54.

    Ziegler H, Wehrli C (1987) The derivation of constitutive relations from the free energy and the dissipation function. Adv Appl Mech 25:183–238

    MathSciNet  MATH  Article  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation through Grants CMMI–1661853 and DMREF–1922371.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oscar Lopez-Pamies.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. The reduced dissipation inequality

Appendix. The reduced dissipation inequality

Denote by \({\mathbf{v}}({\mathbf{x}},t)\) the velocity of the material point that occupies the location \({\mathbf{x}}\in {\Omega }(t)\) at time \(t\in [0,T]\) and assume that at any \({\mathbf{x}}\in {\Omega }(t)\) and time \(t\in [0,T]\) the following quantities exist and are sufficiently regular both in space and time: the mass density \(\rho ({\mathbf{x}},t)\), the mechanical Cauchy stress \({\mathbf{T}}^m({\mathbf{x}},t)\), the mechanical body force \({{\mathbf {f}}}^m({\mathbf{x}},t)\) (per unit volume), the electric force \({{\mathbf {f}}}^e({\mathbf{x}},t)\) (per unit volume), the electric couple \({\mathbf{g }}^e({\mathbf{x}},t)\) (per unit volume), the electric field \({\mathbf{e }}({\mathbf{x}},t)\), the electric displacement \({\mathbf{d }}({\mathbf{x}},t)\), the space charge \(q({\mathbf{x}},t)\) (per unit volume), the internal energy \(u({\mathbf{x}},t)\) (per unit mass), the heat source \(r({\mathbf{x}},t)\) (per unit mass), the heat flux \(\widetilde{{{\mathbf {q}}}}({\mathbf{x}},t)\), the entropy \(\eta ({\mathbf{x}},t)\) (per unit mass), and the absolute temperature \(\theta ({\mathbf{x}},t)\).

Conservation of mass

Conservation of mass is said to be satisfied provided that

$$\begin{aligned} \frac{\partial \rho }{\partial t}+ \mathrm{div} (\rho {\mathbf{v}})=0,\quad ({\mathbf{x}},t)\in {\Omega }(t)\times [0,T]. \end{aligned}$$
(A.1)

Balance of linear and angular momenta

Absent inertia, the balance of linear and angular momenta are said to be satisfied provided that

$$\begin{aligned} \mathrm{div}\,{\mathbf{T}}^m+{{\mathbf {f}}}^{m}+{{\mathbf {f}}}^e={\mathbf {0}},\quad ({\mathbf{x}},t)\in {\Omega }(t)\times [0,T] \end{aligned}$$
(A.2)

and

$$\begin{aligned} \widetilde{\varvec{\varepsilon }}\,{{\mathbf{T}}^m}^T={{\mathbf {g}}}^e,\quad ({\mathbf{x}},t)\in {\Omega }(t)\times [0,T], \end{aligned}$$
(A.3)

where \(\widetilde{\varvec{\varepsilon }}\) stands for the permutation symbol.

In the context of electro-quasi-statics of interest here, the electric force and couple take the form (see, e.g., Eqs. (7.38) and (7.48) in [35])

$$\begin{aligned} {{\mathbf {f}}}^e=q {\mathbf{e}}+\left( \mathrm{grad}\,{\mathbf{e}}\right) ^T {\mathbf{p }}\quad \mathrm{and}\quad {{\mathbf {g}}}^e=-{\mathbf{p }}\times {{\mathbf {e}}}, \end{aligned}$$

where we recall that \({\mathbf{p }}={{\mathbf {d}}}-\varepsilon _0{{\mathbf {e}}}\) stands for the polarization.

Upon defining the electric stress

$$\begin{aligned} {\mathbf{T}}^e= {{\mathbf {e}}} \otimes {\mathbf{d }} -\dfrac{\varepsilon _0}{2}({{\mathbf {e}}} \cdot {{\mathbf {e}}}){\mathbf{I}}\end{aligned}$$

and invoking Gauss’s (A.6) and Faraday’s (A.7) laws introduced further below, the balance of linear (A.2) and angular (A.3) momenta can be recast as

$$\begin{aligned} \mathrm{div}\,{\mathbf{T}}+{{\mathbf {f}}}^{m}={\mathbf {0}},\quad ({\mathbf{x}},t)\in {\Omega }(t)\times [0,T] \end{aligned}$$
(A.4)

and

$$\begin{aligned} {\mathbf{T}}={\mathbf{T}}^T,\quad ({\mathbf{x}},t)\in {\Omega }(t)\times [0,T] \end{aligned}$$
(A.5)

in terms of the total Cauchy stress \({\mathbf{T}}={\mathbf{T}}^m+{\mathbf{T}}^e\). With help of the connections (6) and the definition \({{\mathbf {f}}}=J{{\mathbf {f}}}^m\), Eqs. (A.4)–(A.5) can be further recast as those summoned in the main body of the text, namely, (11).

Maxwell’s equations

In the context of electro-quasi-statics of interest here, Maxwell’s equations are said to be satisfied provided that

$$\begin{aligned} \mathrm{div}\,{{\mathbf {d}}}=q,\quad ({\mathbf{x}},t)\in {{\mathbb {R}}}^3\times [0,T] \end{aligned}$$
(A.6)

and

$$\begin{aligned} \mathrm{curl}\,{\mathbf{e}}={\mathbf{0 }},\quad ({\mathbf{x}},t)\in {{\mathbb {R}}}^3\times [0,T]. \end{aligned}$$
(A.7)

With help of the connections (6) and the definition \(Q=J q\), Eqs. (A.6)–(A.7) can be recast in the form (12) provided in the main body of the text.

Balance of energy

Granted the balance Eqs. (A.1), (A.2), (A.3), (A.6), (A.7), balance of energy is said to be satisfied provided that

$$\begin{aligned}&\rho \, \dot{u}+\mathrm{div}\,\widetilde{{{\mathbf {q}}}}-\rho \, r-{\mathbf{T}}^m \cdot {{\mathbf {\Gamma }}} -\dot{{{\mathbf {p}}}}\cdot {\mathbf{e}} \\&\quad -(\mathrm{tr}\,{{\mathbf {\Gamma }}}){{\mathbf {p}}}\cdot {\mathbf{e}}=0,\quad ({\mathbf{x}},t)\in {\Omega }(t)\times [0,T], \end{aligned}$$
(A.8)

where \({{\mathbf {\Gamma }}}=\partial {\mathbf{v}}({\mathbf{x}},t)/\partial {\mathbf{x}}\) stands for the Eulerian velocity gradient.

Throughout this appendix, a superposed “dot” denotes the material time derivative.

Entropy imbalance

Granted the balance Eq. (A.1), the entropy imbalance is said to be satisfied provided that

$$\begin{aligned} \rho \, \dot{\eta } +\mathrm{div}\left( \frac{\widetilde{{{\mathbf {q}}}}}{\theta }\right) - \frac{\rho \, r}{\theta }\ge 0 ,\quad ({\mathbf{x}},t)\in {\Omega }(t)\times [0,T]. \end{aligned}$$
(A.9)

Upon defining the free energy (per unit mass)

$$\begin{aligned} {{\mathrm {\Psi }}}=u-\theta \eta -\dfrac{1}{\rho }{{\mathbf {p}}}\cdot {\mathbf{e}}\end{aligned}$$

and invoking the balance Eq. (A.8), the entropy imbalance (A.9) can be recast as the reduced dissipation inequality

$$\begin{aligned}&\rho \left( \dot{{{\mathrm {\Psi }}}}+\eta \dot{\theta }\right) -{\mathbf{T}}^m\cdot {{\mathbf {\Gamma }}}+{{\mathbf {p}}}\cdot \dot{{\mathbf{e}}} \\&\quad +\dfrac{1}{\theta }\widetilde{{{\mathbf {q}}}}\cdot (\mathrm{grad}\,\theta )\le 0 ,\quad ({\mathbf{x}},t)\in {\Omega }(t)\times [0,T], \end{aligned}$$

which, in the context of isothermal processes of interest in this work, specializes to

$$\begin{aligned}&\rho \,\dot{{{\mathrm {\Psi }}}}-{\mathbf{T}}^m\cdot {{\mathbf {\Gamma }}}+{{\mathbf {p}}}\cdot \dot{{\mathbf{e}}}\le 0 ,\quad ({\mathbf{x}},t)\in {\Omega }(t)\times [0,T]. \end{aligned}$$
(A.10)

With help of the definition

$$\begin{aligned} \psi =J \rho {{\mathrm {\Psi }}}-\dfrac{\varepsilon _0}{2}J{\mathbf{F}}^{-T}{\mathbf{E}}\cdot {\mathbf{F}}^{-T}{\mathbf{E}}\end{aligned}$$

and the connections (6), the reduced dissipation inequality (A.10) can be further recast as

$$\begin{aligned} \dot{\psi }-{\mathbf{S}}\cdot \dot{{{\mathbf{F}}}}+{\mathbf{D}}\cdot \dot{{\mathbf{E}}} \le 0 ,\quad ({\mathbf{X}},t)\in {\Omega _0}\times [0,T]. \end{aligned}$$
(A.11)

Writing now

$$\begin{aligned} \psi =\psi ^{\mathrm{Eq}}({\mathbf{F}},{\mathbf{E}})+\psi ^{\mathrm{NEq}}({\mathbf{F}},{\mathbf{E}},{\mathbf{F}}{{\mathbf{F}}^{v}}^{-1},{\mathbf{E}}-{\mathbf{E}}^v) \end{aligned}$$

and making use of the connections (3)–(5), the inequality (A.11) reduces finally to the form (10) provided in the main body of the text.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, K., Lopez-Pamies, O. On the two-potential constitutive modeling of dielectric elastomers. Meccanica (2020). https://doi.org/10.1007/s11012-020-01179-1

Download citation

Keywords

  • Finite deformations
  • Electrostriction
  • Dissipative solids
  • Internal variables