Skip to main content
Log in

On the transition from parabolicity to hyperbolicity for a nonlinear equation under Neumann boundary conditions

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

An integro differential equation which is able to describe the evolution of a large class of dissipative models, is considered. By means of an equivalence, the focus shifts to the perturbed sine-Gordon equation that in superconductivity finds interesting applications in multiple engineering areas. The Neumann boundary problem is considered, and the behaviour of a viscous term, defined by a higher-order derivative with small diffusion coefficient \(\varepsilon ,\) is investigated. The Green function, expressed by means of Fourier series, is considered, and an estimate is achieved. Furthermore, some classes of solutions of the hyperbolic equation are determined, proving that there exists at least one solution with bounded derivatives. Results obtained prove that diffusion effects are bounded and tend to zero when \(\varepsilon\) tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oquendo HP (2017) Frictional versus Kelvin Voigt damping in a transmission problem. Math Meth Appl Sci 40:7026–7032

    Article  MATH  Google Scholar 

  2. Renardy M (2004) On localized Kelvin-Voigt damping. ZAMM Z Angew Math Mech 84:280–283

    Article  MathSciNet  MATH  Google Scholar 

  3. Rackea R (2004) Nonlinear thermoelastic plate equations Global existence and decay rates for the Cauchy problem. J Differ Equ 263(2017):8138–8177

    ADS  MathSciNet  Google Scholar 

  4. Straughan B (2011) Heat waves 318, vol 177. Springer series in applied mathematical sciences. Springer, New York

    Book  MATH  Google Scholar 

  5. Shamaev AS, Shumilova VV (2017) Plane acoustic wave propagation through a composite of elastic and Kelvin Voigt viscoelastic material layers. Mech Solids 52(1):25–34

    Article  ADS  Google Scholar 

  6. De Angelis M, Renno P (2008) On the FitzHugh- Nagumo model In: Proceedings WASCOM 2007 XIV international conference on waves and stability in continuous media. World Scientific, Singapore, pp 193–198

  7. Angelis M (2013) A priori estimates for excitable models. Meccanica 48(10):2491–2496

    Article  MathSciNet  MATH  Google Scholar 

  8. De Angelis M, Renno P (2014) Asymptotic effects of boundary perturbations in excitable systems, discrete and continuous dynamical systems. Ser B 19(7):2039–2045

    MathSciNet  MATH  Google Scholar 

  9. Murray JD (2003) Mathematical biology, I, II. Springer, New York

    Google Scholar 

  10. Carillo S (2015) Singular kernel problems in materials with memory. Meccanica 50:603–615

    Article  MathSciNet  MATH  Google Scholar 

  11. Fabrizio M, Lazzari B, Nibbi R (2017) Existence and stability for a visco-plastic material with a fractional constitutive equation. Math Methods Appl Sci 40:6306–6315

    Article  MathSciNet  MATH  Google Scholar 

  12. Fabrizio M, Lazzari B, Nibbi R (2015) Asymptotic stability in linear viscoelasticity with supplies. J Math Anal Appl 427:629–645

    Article  MathSciNet  MATH  Google Scholar 

  13. Carillo S, Chipot M, Valente V, Vergara Caffarelli G (2017) A magneto-viscoelasticity problem with a singular memory kernel. Nonlinear Anal Real World Appl 35:200–210

    Article  MathSciNet  MATH  Google Scholar 

  14. De Angelis M (2010) On a model of superconductivity and biology. Adv Appl Math Sci 7(1):41–50

    MathSciNet  MATH  Google Scholar 

  15. Scott AC (2002) Neuroscience a mathematical primer. Springer, Berlin, p 352

    MATH  Google Scholar 

  16. Angelis M (2015) Mathematical contributions to the dynamics of the Josephson junctions: state of the art and open problems. Nonlinear Dyn Syst Theory 15(3):231–241

    MathSciNet  MATH  Google Scholar 

  17. De Angelis M, Renno P (2014) On asymptotic effects of boundary perturbations in exponentially shaped Josephson junctions. Acta Appl Math 132(1):251–259

    Article  MathSciNet  MATH  Google Scholar 

  18. Scott A (1970) Active and nonlinear wave propagation in electronics. Wiley, Hoboken

    Google Scholar 

  19. Barone A, Paterno G (1982) Physics and application of the Josephson effect. Wiley, Hoboken, p 530

    Book  Google Scholar 

  20. Pankratov AL, Fedorov KG, Salerno M, Shitov SV, Ustinov AV (2015) Nonreciprocal transmission of microwaves through a long Josephson junction. Phys Rev B 92:104501

    Article  ADS  Google Scholar 

  21. Carelli P (2002) DC squid systems. In: International symposium on high critical temperatures superconductors devices

  22. Feldman MJ (1999) Digital applicatons of Josephson Junction. In: Ohta H, Ishii C (eds) Phsisics and applications of mesoscopic Josephson Junctions. Physical Society of Japan, Tokyo, pp 289–304

    Google Scholar 

  23. Barone A, Pagano S (2010) Josephson devices chapter. In: Cooper LN, Feldman D (eds) BCS: 50 years. World Scientific Publishing Co. Pte. Ltd., Singapore

    Google Scholar 

  24. Clarke J (2011) SQUIDs for everything. Nat Mater 10:262–263

    Article  ADS  Google Scholar 

  25. Clarke J (2010) SQUIDs : Then an now, chapter. In: Cooper LN, Feldman D (eds) BCS 50 years. World Scientific Publishing Co Pte. Ltd., Singapore

    Google Scholar 

  26. Jung P, Butz S, Marthaler M, Fistul MV, Leppa Kangas J, Koshelets VP, Ustinov AV (2014) Multistability and switching in a superconducting metamaterial. Nat Commun 5:3730

    Article  Google Scholar 

  27. Gourlay S (2017) Powering the field forward. Cern Courier. Int J High-Energy Phys 57(7):17–22

    Google Scholar 

  28. De Angelis M (2013) Asymptotic estimates related to an integro differential equation. Nonlinear Dyn Syst Theory 13(3):217–228

    MathSciNet  MATH  Google Scholar 

  29. De Angelis M, Fiore G (2013) Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect. J Math Anal Appl 404:477–490

    Article  MathSciNet  MATH  Google Scholar 

  30. Keener JP, Sneyd J (1998) Mathematical physiology. Springer, New York

    MATH  Google Scholar 

  31. Nekhamkina O, Sheintuch M (2006) Boundary-induced spatiotemporal complex patterns in excitable systems. Phys Rev E 73:1–4

    Article  Google Scholar 

  32. Forest MG, Christiansen PL, Pagano S, Parmentier RD, Soerensen MP, Sheu SP (1990) Numerical evidence for global bifurcations leading to switching phenomena in long Josephson junctions. Wave Motion 12:213–226

    Article  MATH  Google Scholar 

  33. Jaworski M (2005) Exponentially tapered Josephson junction: some analytic results. Theor Math Phys 144(2):1176–1180

    Article  MATH  Google Scholar 

  34. De Angelis M, Monte AM, Renno P (2002) On fast and slow times in models with diffusion. Math Models Methods Appl Sci 12(12):1741–1749

    Article  MathSciNet  MATH  Google Scholar 

  35. De Angelis M, Fiore G (2014) Diffusion effects in a superconductive model. Commun Pure Appl Anal 13(1):217–223

    Article  MathSciNet  MATH  Google Scholar 

  36. Benabdallah A, Caputo JG, Scott AC (2000) Laminar phase flow for an exponentially tapered josephson oscillator. J Appl Phys 588(6):3527

    Article  ADS  Google Scholar 

  37. Pankratov AL, Sobolev KVP, Mygind J (2007) Influence of surface losses and the self-pumping effect on current-voltage characteristics of a long Josephson junction. Phys Rev B 75:184516

    Article  ADS  Google Scholar 

  38. De Angelis M (2018) A wave equation perturbed by viscous terms: fast and slow times diffusion effects in a Neumann problem Ricerche mat. https://doi.org/10.1007/s11587-018-0400-1

  39. De Angelis M (2012) On exponentially shaped Josephson junctions. Acta Apl Math 122:179–189

    Article  MathSciNet  MATH  Google Scholar 

  40. De Angelis M, Renno P (2008) Existence, uniqueness and a priori estimates for a nonlinear integro-differential equation. Ricerche Mat 57(1):95–109

    Article  MathSciNet  MATH  Google Scholar 

  41. D’Anna A, De Angelis M, Fiore G (2012) Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions. Acta Appl Math 122:225–267

    Article  MathSciNet  MATH  Google Scholar 

  42. De Angelis M (2001) Asymptotic analysis for the strip problem related to a parabolic third-order operator. Appl Math Lett 14(4):425–430

    Article  MathSciNet  MATH  Google Scholar 

  43. Cannon JR (1984) The one-dimensional heat equation. Addison-Wesley Publishing Company, Boston

    Book  MATH  Google Scholar 

  44. De Angelis M, Maio Mazziotti AE (2008) Existence and uniqueness results for a class of non linear models. In: Mathematical physics models and engineering sciences. Liguori Editore, Naples, Italy, pp 191–202

  45. Johnson S, Suarez P, Biswas A (2012) New exact solutions for the SineGordon equation in 2+1 dimensions. Comput Math Math Phys 52(1):98–104

    Article  MathSciNet  Google Scholar 

  46. Chen W-X, Lin J (2014) Some new exact solutions of (1+2) dimensional sine-Gordon equation. Abstr Appl Anal, 2014, article ID 645456

  47. Aktosun T, Demontis F, Van der Mee C (2010) Exact solutions for the sine-Gordon equation. J Math Phys 51:123521

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Fiore G, Guerriero G, Maio A, Mazziotti E (2015) On kinks and other travelling-wave solutions of a modified sine-Gordon equation. Meccanica 50:1989–2006

    Article  MathSciNet  MATH  Google Scholar 

  49. Alvis-Zuniga J-L, Marin-Ramirez A-M, Ortiz-Ortiz R-D (2016) Solutions for the Perturbed Sine-Gordon Equation. J Eng Appl Sci 11:2294–2297

    Google Scholar 

  50. Mitinovic S, Pecaric J, Fink AM (1991) Inequalities involving functions and their integrals and derivatives. Kluwer Academic Publisher, Dordrecht

    Book  Google Scholar 

Download references

Acknowledgements

The author is grateful to anonymous referees for their helpful comments and suggestions. This paper has been performed under the auspices of G.N.F.M. of INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica De Angelis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Angelis, M. On the transition from parabolicity to hyperbolicity for a nonlinear equation under Neumann boundary conditions. Meccanica 53, 3651–3659 (2018). https://doi.org/10.1007/s11012-018-0906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0906-3

Keywords

Mathematics Subject Classification

Navigation