Skip to main content
Log in

Necessity of law of balance of moment of moments in non-classical continuum theories for solid continua

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the non-classical continuum theories for solid continua the presence of internal rotations and their gradients arising due to Jacobian of deformation and/or consideration of Cosserat rotations as additional unknown degrees of freedom at a material point necessitate existence of moment tensor. For small deformation, small strains theories, in Lagrangian description the Cauchy moment tensor and the rates of rotation gradients are rate of work conjugate pair in addition to the rate of work conjugate Cauchy stress tensor and the strain rate tensor. It is well established that in such non-classical theories the Cauchy stress tensor is non-symmetric and the antisymmetric components of the Cauchy stress tensor are balanced by gradients of the Cauchy moment tensor, the balance of angular momenta balance law. In the non-classical continuum theories incorporating internal rotations and conjugate moment tensor that are absent in the classical continuum theories, the fundamental question is “are the conservation and balance laws used in classical continuum mechanics sufficient to ensure dynamic equilibrium of the deforming volume of matter”. At this stage the Cauchy moment tensor remains non-symmetric if we only consider standard balance laws that are used in classical continuum theories. Thus, requiring constitutive theories for the symmetric as well as anti-symmetric Cauchy moment tensors. The work presented in this paper shows that when the thermodynamically consistent constitutive theories are used for symmetric as well as antisymmetric Cauchy moment tensor non physical and spurious solutions result even in simple model problems. This suggests that perhaps the additional conjugate tensors resulting due to presence of internal rotations, namely the Cauchy moment tensor and the antisymmetric part of the Cauchy stress stress tensor must obey some additional law or restriction so that the spurious behavior is precluded. This paper demonstrates that in the non-classical theory with internal rotations considered here the law of balance of moment of moments and the consideration of the equilibrium of moment of moments are in fact identical. When this balance law is considered the Cauchy moment tensor becomes symmetric, hence eliminating the constitutive theory for the antisymmetric Cauchy moment tensor and thereby eliminating spurious and non physical solutions. The necessity of this balance law is established theoretically and is also demonstrated through model problems using thermoelastic solids with small strain small deformation as an example. The findings reported in this paper hold for thermoviscoelastic solids with and without memory as well as when deformation and strains are small. Extensions of the concepts presented here for finite deformation and finite strain will be presented in a follow up paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Voigt W (1887) Theoretische Studien über die Wissenschaften zu Elastizitätsverhältnisse der Krystalle. Abhandl Ges Göttingen 34

  2. Voigt W (1894) Über Medien ohne innere Kräfte und eine durch sie gelieferte mechanische Deutung der Maxwell-Hertzschen Gleichungen. Göttingen Abhandl 72–79

  3. Cosserat E, Cosserat F (1909) Théorie des corps déformables. Hermann, Paris

    MATH  Google Scholar 

  4. Günther W (1958) Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandl Braunschweig Wiss Ges 10:195–213

    MATH  Google Scholar 

  5. Grioli G (1960) Elasticità Asimmetrica. Ann Mat Pura Appl 50(1):389–417

    Article  MathSciNet  MATH  Google Scholar 

  6. Aero EL, Kuvshinskii EV (1961) Fundamental equations of the theory of elastic media with rotationally interacting particles. Sov Phys Solid State 2:1272–1281

    MathSciNet  Google Scholar 

  7. Schäfer H (1962) Versuch einer Elastizitätstheorie des Zweidimensionalen Ebenen Cosserat-Kontinuums. Miszellaneen der Angewandten Mechanik 277–292

  8. Truesdell CA, Toupin RA (1960) The classical field theories of mechanics. In: Flügge S (ed) Handbuch der Physik, vol 3. Springer, Berlin

    Google Scholar 

  9. Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448

    Article  MathSciNet  MATH  Google Scholar 

  10. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385–414

    Article  MathSciNet  MATH  Google Scholar 

  11. Koiter WT (1964) Couple stresses in the theory of elasticity, I and II. Proc Ser B Koninklijke Nederlandse Akademie van Wetenschappen 67:17–44

    MathSciNet  MATH  Google Scholar 

  12. Eringen AC (1962) Nonlinear theory of continuous media. McGraw-Hill, New York

    Google Scholar 

  13. Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids—I. Int J Eng Sci 2(2):189–203

    Article  MathSciNet  MATH  Google Scholar 

  14. Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids—II. Int J Eng Sci 2(2):389–404

    MATH  Google Scholar 

  15. Eringen AC (1964) Simple microfluids. Int J Eng Sci 2(2):205–217

    Article  MathSciNet  MATH  Google Scholar 

  16. Eringen AC (1964) Mechanics of micromorphic materials. In: Gortler H (ed) Proceedings of 11th international congress of applied mechanics, Munich. Springer, Berlin, pp 131–138

  17. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  18. Green AE, Rivlin RS (1964) Multipolar continuum mechanics. Arch Ration Mech Anal 17(2):113–147

    Article  MathSciNet  MATH  Google Scholar 

  19. Mindlin RD (1965) Stress functions for a Cosserat continuum. Int J Solids Struct 1:265–271

    Article  Google Scholar 

  20. Brand M, Rubin MB (2007) A constrained theory of a Cosserat point for the numerical solution of dynamic problems of non-linear elastic rods with rigid cross-sections. Int J Non Linear Mech 42:216–232

    Article  Google Scholar 

  21. Cao DQ, Tucker RW (2008) Nonlinear dynamics of elastic rods using the Cosserat theory: modelling and simulation. Int J Solids Struct 45:460–477

    Article  MATH  Google Scholar 

  22. Riahi A, Curran JH (2009) Full 3D finite element Cosserat formulation with application in layered structures. Appl Math Model 33:3450–3464

    Article  MathSciNet  MATH  Google Scholar 

  23. Sansour C (1998) A unified concept of elastic viscoplastic Cosserat and micromorphic continua. J Phys IV Fr 8:341–348

    Article  Google Scholar 

  24. Sansour C, Skatulla S (2009) A strain gradient generalized continuum approach for modelling elastic scale effects. Comput Methods Appl Mech Eng 198:1401–1412

    Article  ADS  MATH  Google Scholar 

  25. Sansour C, Skatulla S, Zbib H (2010) A formulation for the micromorphic continuum at finite inelastic strains. Int J Solids Struct 47:1546–1554

    Article  MATH  Google Scholar 

  26. Varygina MP, Sadovskaya OV, Sadovskii VM (2010) Resonant properties of moment Cosserat continuum. J Appl Mech Tech Phys 51(3):405–413

    Article  ADS  MATH  Google Scholar 

  27. Nikabadze MU (2011) Relation between the stress and couple-stress tensors in the microcontinuum theory of elasticity. Mosc Univ Mech Bull 66(6):141–143

    Article  MathSciNet  MATH  Google Scholar 

  28. Ieşan D (2011) Deformation of porous Cosserat elastic bars. Int J Solids Struct 48:573–583

    Article  MATH  Google Scholar 

  29. Jung P, Leyendecker S, Linn J, Ortiz M (2010) A discrete mechanics approach to the Cosserat rod theory—part 1: static equilibria. Int J Numer Methods Eng 85:31–60

    Article  MathSciNet  MATH  Google Scholar 

  30. Alonso-Marroquín F (2011) Static equations of the Cosserat continuum derived from intra-granular stresses. Granul Matter 13:189–196

    Article  Google Scholar 

  31. Chiriţă S, Ghiba ID (2012) Rayleigh waves in Cosserat elastic materials. Int J Eng Sci 54:117–127

    MathSciNet  Google Scholar 

  32. Cao DQ, Song MT, Tucker RW, Zhu WD, Liu DS, Huang WH (2013) Dynamic equations of thermoelastic Cosserat rods. Commun Nonlinear Sci Numer Simul 18:1880–1887

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Addessi D, De Bellis ML, Sacco E (2013) Micromechanical analysis of heterogeneous materials subjected to overall Cosserat strains. Mech Res Commun 54:27–34

    Article  Google Scholar 

  34. Cialdea A, Dolce E, Malaspina A, Nanni V (2013) On an integral equation of the first kind arising in the theory of Cosserat. Int J Math 24(5):21

    Article  MathSciNet  MATH  Google Scholar 

  35. Skatull S, Sansour C (2013) A formulation of a cosserat-like continuum with multiple scale effects. Comput Mater Sci 67:113–122

    Article  Google Scholar 

  36. Liu Q (2013) Hill’s lemma for the average-field theory of Cosserat continuum. Acta Mech 224:851–866

    Article  MathSciNet  MATH  Google Scholar 

  37. Del Piero G (2014) A rational approach to Cosserat continua, with application to plate and beam theories. Mech Res Commun 58:97–104

    Article  Google Scholar 

  38. Genovese D (2014) A two-director Cosserat rod model using unconstrained quaternions. Eur J Mech A/Solids 43:44–57

    Article  MathSciNet  Google Scholar 

  39. Huang W, Sloan SW, Sheng D (2014) Analysis of plane Couette shear test of granular media in a Cosserat continuum approach. Mech Mater 69:106–115

    Article  Google Scholar 

  40. Surana KS, Joy AD, Reddy JN (2017) Non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories. Contin Mech Thermodyn 29(2):665–698

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Surana KS, Powell MJ, Reddy JN (2015) A more complete thermodynamic framework for solid continua. J Therm Eng 1(1):1–13

    Article  Google Scholar 

  42. Surana KS, Reddy JN, Nunez D, Powell MJ (2015) A polar continuum theory for solid continua. Int J Eng Res Ind Appl 8(2):77–106

    Google Scholar 

  43. Surana KS, Powell MJ, Reddy JN (2015) Constitutive theories for internal polar thermoelastic solid continua. J Pure Appl Math Adv Appl 14(2):89–150

    Article  Google Scholar 

  44. Surana KS, Powell MJ, Reddy JN (2015) A more complete thermodynamic framework for fluent continua. J Therm Eng 1(1):14–30

    Google Scholar 

  45. Surana KS, Powell MJ, Reddy JN (2015) Ordered rate constitutive theories for internal polar thermofluids. Int J Math Sci Eng Appl 9(3):51–116

    Google Scholar 

  46. Yang FACM, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  MATH  Google Scholar 

  47. Surana KS (2015) Advanced mechanics of continua. CRC/Taylor and Francis, Boca Raton, FL

    MATH  Google Scholar 

  48. Steinmann P (1994) A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int J Solids Struct 31(8):1063–1084

    Article  MathSciNet  MATH  Google Scholar 

  49. Srinivasa AR, Reddy JN (2013) A model for a constrained, finitely deforming, elastic solid with rotation gradient dependent strain energy, and its specialization to von Kármán Plates and Beams. J Mech Phys Solids 61(3):873–885

    Article  ADS  MathSciNet  Google Scholar 

  50. Segerstad PH, Toll S, Larsson R (2008) A micropolar theory for the finite elasticity of open-cell cellular solids. Proc R Soc A 465:843–865

    Article  MathSciNet  MATH  Google Scholar 

  51. Eringen AC (1967) Mechanics of continua. Wiley, New York

    MATH  Google Scholar 

  52. Prager W (1945) Strain hardening under combined stresses. J Appl Phys 16:837–840

    Article  ADS  MathSciNet  Google Scholar 

  53. Reiner M (1945) A mathematical theory of dilatancy. Am J Math 67:350–362

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Todd JA (1948) Ternary quadratic types. Philos Trans R Soc Lond Ser A Math Phys Sci 241:399–456

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Rivlin RS, Ericksen JL (1955) Stress-deformation relations for isotropic materials. J Ration Mech Anal 4:323–425

    MathSciNet  MATH  Google Scholar 

  56. Rivlin RS (1955) Further remarks on the stress-deformation relations for isotropic materials. J Ration Mech Anal 4:681–702

    MathSciNet  MATH  Google Scholar 

  57. Wang CC (1969) On representations for isotropic functions, part I. Arch Ration Mech Anal 33:249

    Article  Google Scholar 

  58. Wang CC (1969) On representations for isotropic functions, part II. Arch Ration Mech Anal 33:268

    Article  Google Scholar 

  59. Wang CC (1970) A new representation theorem for isotropic functions, part I and part II. Arch Ration Mech Anal 36:166–223

    Article  Google Scholar 

  60. Wang CC (1971) Corrigendum to ‘Representations for isotropic functions’. Arch Ration Mech Anal 43:392–395

    Article  Google Scholar 

  61. Smith GF (1970) On a fundamental error in two papers of C.C. Wang, ‘On representations for isotropic functions, part I and part II’. Arch Ration Mech Anal 36:161–165

    Article  Google Scholar 

  62. Smith GF (1971) On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int J Eng Sci 9:899–916

    Article  MathSciNet  MATH  Google Scholar 

  63. Spencer AJM, Rivlin RS (1959) The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch Ration Mech Anal 2:309–336

    Article  MathSciNet  MATH  Google Scholar 

  64. Spencer AJM, Rivlin RS (1960) Further results in the theory of matrix polynomials. Arch Ration Mech Anal 4:214–230

    Article  MathSciNet  MATH  Google Scholar 

  65. Spencer AJM (1971) Theory of invariants. Chapter 3. In: Eringen AC (ed) Treatise on continuum physics, I. Academic Press, New York

    Google Scholar 

  66. Boehler JP (1977) On irreducible representations for isotropic scalar functions. J Appl Math Mech Z Angew Math Mech 57:323–327

    Article  MathSciNet  MATH  Google Scholar 

  67. Zheng QS (1993) On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. Int J Eng Sci 31:1013–1024

    Article  MathSciNet  MATH  Google Scholar 

  68. Zheng QS (1993) On transversely isotropic, orthotropic and relatively isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors. Int J Eng Sci 31:1399–1453

    Article  MATH  Google Scholar 

  69. Surana KS, Reddy JN (2016) The finite element method for boundary value problems: mathematics and computations. CRC/Taylor and Francis, New York

    Google Scholar 

Download references

Acknowledgements

The support provided by the first and the third author’s university distinguished professorships is gratefully acknowledged. The financial support provided to the second author by the department of mechanical engineering and school of engineering is also acknowledged. The computational infrastructure of CML of the mechanical engineering department have been instrumental in performing the numerical studies presented in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Surana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surana, K.S., Shanbhag, R. & Reddy, J.N. Necessity of law of balance of moment of moments in non-classical continuum theories for solid continua. Meccanica 53, 2939–2972 (2018). https://doi.org/10.1007/s11012-018-0851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0851-1

Keywords

Navigation