Skip to main content
Log in

Asymptotic homogenization of fibre-reinforced composites: a virtual element method approach

  • Novel Computational Approaches to Old and New Problems in Mechanics
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A virtual element method approach is presented for solving the unit cell problem, in application of the asymptotic homogenization method, and computing the antiplane shear homogenized material moduli of a composite material reinforced by cylindrical inclusions of arbitrary cross section. Validation of the proposed numerical method is proved by comparison with analytical and numerical reference solutions, for a number of micro-structural arrays and for different grading properties of the material constituents. A point on numerical efficiency is also made with respect to the possibility of local refinement granted by the innovative numerical procedure which relies on a mesh conformity concept ampler than the one of classical finite element method. The flexibility of the method allows for a large variety of microstructure shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Antonietti PF, Beirão da Veiga L, Scacchi S, Verani M (2016) A \({C}^1\) virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J Numer Anal 54(1):34–56

    Article  MathSciNet  MATH  Google Scholar 

  2. Artioli E, Beirão da Veiga L, Lovadina C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem. Comput Mech 60:355–377

    Article  MathSciNet  MATH  Google Scholar 

  3. Artioli E, Beirão da Veiga L, Lovadina C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem. Comput Mech 60:643–657

    Article  MathSciNet  MATH  Google Scholar 

  4. Artioli E, Bisegna P (2013) Effective longitudinal shear moduli of periodic fibre-reinforced composites with functionally-graded fibre coatings. Int J Solids Struct 50:1154–1163

    Article  Google Scholar 

  5. Artioli E, Bisegna P, Maceri F (2010) Effective longitudinal shear moduli of periodic fibre-reinforced composites with radially-graded fibres. Int J Solids Struct 47:383–397

    Article  MATH  Google Scholar 

  6. Artioli E, de Miranda S, Lovadina C, Patruno L (2017) A family of virtual element methods for plane elasticity problems based on the Hellinger–Reissner principle, submitted for publication, and online on: arxiv:1711.06168

  7. Artioli E, de Miranda S, Lovadina C, Patruno L (2017) A stress/displacement virtual element method for plane elasticity problems. Comput Methods Appl Mech Eng 325:155–174

    Article  ADS  MathSciNet  Google Scholar 

  8. Artioli E, Taylor RL (2018) Vem for inelastic solids. Comput Methods Appl Sci 46:381–394

    Article  MathSciNet  Google Scholar 

  9. Bathe KJ (1996) Finite element procedures. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  10. Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(1):199–214

    Article  MathSciNet  MATH  Google Scholar 

  11. Beirão da Veiga L, Brezzi F, Marini LD (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794–812

    Article  MathSciNet  MATH  Google Scholar 

  12. Beirão da Veiga L, Brezzi F, Marini LD, Russo A (2014) The hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24(8):1541–1573

    Article  MathSciNet  MATH  Google Scholar 

  13. Beirão da Veiga L, Lovadina C, Mora D (2015) A virtual element method for elastic and inelastic problems on polytope meshes. Comput Methods Appl Mech Eng 295:327–346

    Article  ADS  MathSciNet  Google Scholar 

  14. Beirão Da Veiga L, Manzini M (2015) Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM: M2AN 49:577–599

    Article  MathSciNet  MATH  Google Scholar 

  15. Bensoussan A, Lions JL, Papanicolau G (1978) Asymptotic analysis for periodic structures. North-Holland, Amsterdam

    Google Scholar 

  16. Biabanaki S, Khoei A, Wriggers P (2014) Polygonal finite element methods for contact–impact problems on non-conformal meshes. Comput Methods Appl Mech Eng 269:198–221

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Bigoni D, Serkov SK, Valentini M, Movchan AB (1998) Asymptotic models of dilute composites with imperfectly bonded inclusions. Int J Solids Struct 35(24):3239–3258

    Article  MathSciNet  MATH  Google Scholar 

  18. Brezzi F, Marini LD (2013) Virtual element methods for plate bending problems. Comput Methods Appl Mech Eng 253:455–462

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Cangiani A, Manzini G, Russo A, Sukumar N (2015) Hourglass stabilization and the virtual element method. Int J Numer Method Eng 102(3–4):404–436. https://doi.org/10.1002/nme.4854

    Article  MathSciNet  MATH  Google Scholar 

  20. Chi H, Beirão da Veiga L, Paulino GH (2017) Some basic formulations of the virtual element method (VEM) for finite deformations. Comput Methods Appl Mech Eng 318:148–192

    Article  ADS  MathSciNet  Google Scholar 

  21. Chi H, Talischi C, Lopez-Pamies O, Paulino GH (2015) Polygonal finite elements for finite elasticity. Int J Numer Methods Eng 101(4):305–328

    Article  MathSciNet  MATH  Google Scholar 

  22. Duvaut G (1976) Homogeneization et materiaux composite. In: Ciarlet P, Rouseau M (eds) Theoretical and appliedMechanics. North-Holland, Amsterdam, pp 194–278

    Google Scholar 

  23. Engwirda D (2014) Locally-optimal Delaunay-refinement and optimisation-based mesh generation. Ph.D. thesis, The University of Sydney

  24. Gain AL, Paulino GH, Leonardo SD, Menezes IFM (2015) Topology optimization using polytopes. Comput Methods Appl Mech Eng 293:411–430

    Article  ADS  MathSciNet  Google Scholar 

  25. Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160

    Article  ADS  MathSciNet  Google Scholar 

  26. Hashin Z (1983) Analysis of composite materials—a survey. J Appl Mech 50:481–505

    Article  MATH  Google Scholar 

  27. Hashin Z (1991) The spherical inclusion with imperfect interface. J Appl Mech 58:444–449

    Article  Google Scholar 

  28. Hill R (1963) Elastic properties of reinforced solids: some theoretical pnnciples. J Mech Phys Solids 11:357–372

    Article  ADS  MATH  Google Scholar 

  29. Hollister SJ, Kikuchi N (1992) A comparison of homogenization and standard mechanics analyses for periodic porous composites. Comput Mech 10:73–95

    Article  MATH  Google Scholar 

  30. Hughes TJR (2000) The finite element method linear static and dynamic finite element analysis, 2nd edn. Dover, Downers Grove

    MATH  Google Scholar 

  31. Joyce D, Parnell WJ, Assier RC, Abrahams ID (2017) An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems. Proc R Soc 473:20170080

    Article  MathSciNet  Google Scholar 

  32. Larsen EW (1975) Neutron transport and diffusion in inhomogeneous media. Int J Math Phys 16:1421–1427

    Article  ADS  MathSciNet  Google Scholar 

  33. Lene F, Leguillon D (1982) Homogenized constitutive law for a partially cohesive composite material. Int J Solids Struct 18:443–458

    Article  MathSciNet  MATH  Google Scholar 

  34. Leon SE, Spring D, Paulino GH (2014) Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements. Int J Numer Methods Eng 100:555–576

    Article  MathSciNet  MATH  Google Scholar 

  35. Lions JL (1980) Asymptotic expansions in perforated media with a periodic structure. Rocky Mt J Math 10:125–140

    Article  MathSciNet  MATH  Google Scholar 

  36. Lions JL (1981) Some methods in the mathematical analysls analysis of systems and their control. Gordon and Breach Science Publishers, New York

    Google Scholar 

  37. Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109–143

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157:69–94

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Sanchez-Palencia E (1974) Comportements local et macroscopique d’un type de milieux physiques heterogenes. Int J Eng Sci 12:331–351

    Article  MATH  Google Scholar 

  40. Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory, lecture notes in physics. Springer, Berlin

    MATH  Google Scholar 

  41. Shabana YM, Noda N (2008) Numerical evaluation of the thermomechanical effective properties of a functionally graded material using the homogenization method. Int J Solids Struct 45:3494–3506

    Article  MATH  Google Scholar 

  42. Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61(12):2045–2066

    Article  MathSciNet  MATH  Google Scholar 

  43. Suquet P (1987) Elements of homogenization theory for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenizat!on techniques for composite media. Springer, Berlin, pp 194–278

    Google Scholar 

  44. Talischi C, Paulino GH, Pereira A, Menezes IFM (2010) Polygonal finite elements for topology optimization: a unifying paradigm. Int J Numer Methods Eng 82(6):671–698

    MATH  Google Scholar 

  45. Willoughby N, Parnell WJ, Hazel AL, Abrahams ID (2012) Homogenization methods to approximate the effective response of random fibre-reinforced composites. Int J Solids Struct 49:1421–1433

    Article  Google Scholar 

  46. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Artioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artioli, E. Asymptotic homogenization of fibre-reinforced composites: a virtual element method approach. Meccanica 53, 1187–1201 (2018). https://doi.org/10.1007/s11012-018-0818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0818-2

Keywords

Navigation