Skip to main content
Log in

Evaluation of the capacity surfaces of reinforced concrete sections: Eurocode versus a plasticity-based approach

  • Novel Computational Approaches to Old and New Problems in Mechanics
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The classical Eurocode-compliant ultimate limit state (ULS) analysis of reinforced concrete sections is investigated in the paper with the aim of verifying if and how this well-established design procedure can be related to plasticity theory. For this reason, a comparative analysis concerning capacity surfaces of reinforced concrete cross sections, computed via a ULS procedure and a limit analysis approach, is presented. To this end, a preliminary qualitative discussion outlines modeling assumptions aiming to reproduce the physical behavior of reinforced concrete cross sections with respect to ductility and confinement issues. Besides the theoretical importance of the proposed approach, numerical experiments prove that limit analysis yields not only very accurate results but also a computationally effective procedure that can be affordably used in common design practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bilotta A, Garcea G, Leonetti L (2016) A composite mixed finite element model for the elasto-plastic analysis of 3D structural problems. Finite Elem Anal Des 113(Suppl C):43–53

    Article  Google Scholar 

  2. Bing L, Park R, Tanaka H (2000) Constitutive behavior of high-strength concrete under dynamic loads. ACI Struct J 97(4):619–629

    Google Scholar 

  3. Bleyer J, De Buhan P (2013) Yield surface approximation for lower and upper bound yield design of 3d composite frame structures. Comput Struct 129:86–98

    Article  Google Scholar 

  4. Casciaro R, Garcea G (2002) An iterative method for shakedown analysis. Comput Methods Appl Mech Eng 191(49–50):5761–5792

    Article  ADS  MATH  Google Scholar 

  5. Chandler A, Lam N (2001) Performance based design in earthquake engineering a multidisciplinary review. Eng Struct 23:1525–1543

    Article  Google Scholar 

  6. Chiorean C (2010) Computerised interaction diagrams and moment capacity contours for composite steel concrete cross-sections. Eng Struct 32(11):3734–3757

    Article  Google Scholar 

  7. Chiorean C (2013) A computer method for nonlinear inelastic analysis of 3d composite steelconcrete frame structures. Eng Struct 57(Suppl C):125–152

    Article  Google Scholar 

  8. Ditlevsen OD, Madsen HO (1996) Structural reliability methods. Wiley, Chichester

    Google Scholar 

  9. European Union: EN 1992—Eurocode 2: Design of concrete structures (1992)

  10. European Union: EN 1998-1-3—Eurocode 8: Design of structures for earthquake resistance (1998)

  11. Ile N, Frau A (2017) Use of response envelopes for seismic margin assessment of reinforced concrete walls and slabs. Nucl Eng Des 314(Suppl C):238–250

    Article  Google Scholar 

  12. Karsan ID, Jirsa JO (1969) Behavior of concrete under compressive loading. J Struct Div 95(12):2543–2563

    Google Scholar 

  13. Karthik M, Mander J (2011) Stress-block parameters for unconfined and confined concrete based on a unified stress–strain model. J Struct Eng 137(2):270–273

    Article  Google Scholar 

  14. Kent DC, Park R (1971) Flexural members with confined concrete. J Struct Div 97(7):1969–1990

    Google Scholar 

  15. Kim JH, Lee HS (2017) Reliability assessment of reinforced concrete rectangular columns subjected to biaxial bending using the load contour method. Eng Struct 150(Suppl C):636–645

    Article  Google Scholar 

  16. Koiter WT (1960) General theorems for elasticplastic solids. In: Sneddon IN, Hill R (eds) Progress in solid mechanics. North-Holland, Amsterdam

    Google Scholar 

  17. Leonetti L, Le CV (2016) Plastic collapse analysis of Mindlin–Reissner plates using a composite mixed finite element. Int J Numer Methods Eng 105(12):915–935

    Article  MathSciNet  Google Scholar 

  18. Leonetti L, Casciaro R, Garcea G (2015) Effective treatment of complex statical and dynamical load combinations within shakedown analysis of 3D frames. Comput Struct 158:124–139

    Article  Google Scholar 

  19. Loureno PB, Figueiras JA (1995) Solution for the design of reinforced concrete plates and shells. J Struct Eng 121(5):815–823

    Article  Google Scholar 

  20. Lubliner J (2008) Plasticity theory. Dover, London

    MATH  Google Scholar 

  21. Malena M, Casciaro R (2008) Finite element shakedown analysis of reinforced concrete 3d frames. Comput Struct 86(11–12):1176–1188

    Article  Google Scholar 

  22. Mander J, Priestley M, Park R (1988) Observed stress–strain behavior of confined concrete. J Struct Eng 114(8):1827–1849

    Article  Google Scholar 

  23. Mander J, Priestley M, Park R (1988) Theoretical stress–strain model for confined concrete. J Struct Eng 114(8):1804–1826

    Article  Google Scholar 

  24. Marmo F, Rosati L (2012) Analytical integration of elasto-plastic uniaxial constitutive laws over arbitrary sections. Int J Numer Methods Eng 91:990–1022

    Article  MathSciNet  Google Scholar 

  25. Marmo F, Rosati L (2013) The fiber-free approach in the evaluation of the tangent stiffness matrix for elastoplastic uniaxial constitutive laws. Int J Numer Methods Eng 94:868–894

    Article  MathSciNet  MATH  Google Scholar 

  26. Marmo F, Rosati L (2015) Automatic cross-section classification and collapse load evaluation for steel/aluminum thin-walled sections of arbitrary shape. Eng Struct 100:57–65

    Article  Google Scholar 

  27. Melan E (1938) Zur plastizität des raümlichen continuum. Ing Arch 9:116–126

    Article  MATH  Google Scholar 

  28. Melchers RE (2002) Structural reliability, analysis and prediction, 2nd edn. Wiley, Chichester

    Google Scholar 

  29. Menun C (2003) A response-spectrum-based envelope for Mohr’s circle. Earthq Eng Struct Dyn 32(12):1917–1935

    Article  Google Scholar 

  30. Menun C, Der Kiureghian A (2000) Envelopes for seismic response vectors—I: theory. J Struct Eng 126(4):467–473

    Article  Google Scholar 

  31. Menun C, Der Kiureghian A (2000) Envelopes for seismic response vectors—II: application. J Struct Eng 126(4):474–481

    Article  Google Scholar 

  32. Pastor F, Loute E (2005) Solving limit analysis problems: an interior-point method. Commun Numer Methods Eng 21(11):631–642

    Article  MathSciNet  MATH  Google Scholar 

  33. Priestley M, Seible F, Calvi GM (1996) Seismic design and retrofit of bridges. Wiley, New York

    Book  Google Scholar 

  34. Scott BD, Park R, Priestley MJN (1982) Stress–strain behavior of concrete confined by overlapping hoops at low and high strain rates. J Am Concrete Inst 79(1):13–27

    Google Scholar 

  35. Sessa S, Marmo F, Rosati L (2015) Effective use of seismic response envelopes for reinforced concrete structures. Earthq Eng Struct Dyn 44(14):2401–2423

    Article  Google Scholar 

  36. Simon JW (2012) Shakedown analysis with multidimensional loading spaces. Comput Mech 49:291–334

    Article  MathSciNet  Google Scholar 

  37. Spiliopoulos KV, Panagiotou KD (2017) An enhanced numerical procedure for the shakedown analysis in multidimensional loading domains. Comput Struct 193:155–171

    Article  Google Scholar 

  38. Valoroso N, Marmo F, Sessa S (2014) Limit state analysis of reinforced shear walls. Eng Struct 61:127–139

    Article  Google Scholar 

  39. Yan Y, Chirikjian GS (2015) Closed-form characterization of the Minkowski sum and difference of two ellipsoids. Geom Dedicata 177(1):103–128

    Article  MathSciNet  MATH  Google Scholar 

  40. Zouain N (2004) Encyclopedia of computational mechanics, chap. Shakedown and safety assessment. Wiley, Chichester, pp 291–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Sessa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sessa, S., Marmo, F., Rosati, L. et al. Evaluation of the capacity surfaces of reinforced concrete sections: Eurocode versus a plasticity-based approach. Meccanica 53, 1493–1512 (2018). https://doi.org/10.1007/s11012-017-0791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0791-1

Keywords

Navigation