Advertisement

Meccanica

, Volume 51, Issue 12, pp 2949–2955 | Cite as

Shape change and deformation

  • Michel Frémond
50th Anniversary of Meccanica
  • 186 Downloads

Abstract

The shape of a system of solids can change: the solids of the system can deform and their relative positions can change. The description of the changes is not fixed once for all. There are many ways to quantify the shape changes, i.e., to define the velocities of deformation. These velocities of deformation are important because they introduce the internal forces with their power, the power of the internal forces. We give two example: in the first one we consider the system made of two rigid solids, in the second one we consider a solid with large deformation. Observation leads us to define new velocities of deformation useful to predict the smooth and the the non-smooth motion of solids and systems of solids.

Keywords

Continuum mechanics Shape change Deformation Internal forces Large deformations Collisions Flattening Principle of virtual power Equations of motion Constitutive laws 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. 1.
    Antman SS (1970) Existence of solutions of the equilibrium equations for non linearly elastic rings and arches. Indiana Univ Math J 20:281–302MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Antman SS (2005) Nonlinear Problems of Elasticity, 2nd edn. Appl Math Sci, vol 107. Springer, New YorkGoogle Scholar
  3. 3.
    Argoul P (2013) The non-smooth view for contact dynamics by Michel Frémond extended to the modeling of crowd movements. Discret Cont Dyn Syst Ser S 2(2). doi: 10.3934/dcdss.2013.6.547
  4. 4.
    Argoul P, Pécol P, Cumunel G, Erlicher S (2013) A discrete crowd movement model for holding hands pedestrians. In: EUROMECH - Colloquium 548, Direct and variational methods for non smooth problems in mechanics, June 24–26Google Scholar
  5. 5.
    Bonetti E, Colli P, Frémond M (2014) 2D Motion with Large Deformations. Bollettino dell’Unione Matematica Italiana 7(19–44):2014. doi: 10.1007/s40574-014-0002-0 MathSciNetMATHGoogle Scholar
  6. 6.
    Bonetti E, Colli P, Frémond M (2014) The 3D motion of a solid with large deformations. C R Acad Sci Paris 352(3):183–187. doi: 10.1016/j.crma.2014.01.007 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ciarlet PG (1988) Mathematical Elasticity volume I: three-dimensional elasticity. North-Holland, AmsterdamMATHGoogle Scholar
  8. 8.
    Frémond M (2001) Internal constraints in mechanics. Philos Trans R Soc 359(1789):2309–2326ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Frémond M (2007) Collisions. Edizioni del Dipartimento di Ingegneria Civile, Università di Roma “Tor Vergata”, ISBN: 978-88-6296-000-7Google Scholar
  10. 10.
    Frémond M (2016) Collision Engineering: Theory and Applications. Spring Ser Solid Struct Mech 6. doi: 10.1007/978-3-662-52696-5, http://www.springer.com/us/book/9783662526941
  11. 11.
    Frémond M (2016) Virtual Work and Shape Change in Solid Mechanics. Spring Ser Solid Struct Mech 7. http://www.springer.com/us/book/9783319406817, doi: 10.1007/978-3-319-40682-4
  12. 12.
    Salençon J (2005) Mécanique des milieux continus. I., Éditions de l’École Polytechnique, PalaiseauGoogle Scholar
  13. 13.
    Kabalan B (2016) Crowd dynamics: modeling pedestrian movement and associated generated forces. Ph.D. thesis, Université Paris-Est, Champs-sur-Marne, FranceGoogle Scholar
  14. 14.
    Lions JL, Magenes E (1968) Problèmes aux limites non homogènes et applications, vol 1. Dunod, ParisMATHGoogle Scholar
  15. 15.
    Lions JL, Magenes E (1972) Non-Homogeneous Boundary Value Problems and Applications, Vol 1, ISBN: 978-3-642-65163-2 (Print) 978-3-642-65161-8 (Online), SpringerGoogle Scholar
  16. 16.
    Pécol P (2011) Modélisation 2D discréte du mouvement des piétons. Application à l’évacuation des structures du génie civil et à l’interaction foule-passerelle. Ph.D. thesis, Université Paris-Est, Champs-sur-Marne, FranceGoogle Scholar
  17. 17.
    Pécol P, Argoul P, Dal Pont S, Erlicher S (2013) The non smooth view for contact dynamics by Michel Frémond extended to the modeling of crowd movements, AIMS. Discrete Cont Dynl Syst Ser S 6(2):547–565MATHGoogle Scholar
  18. 18.
    Pécol P, Dal Pont S, Erlicher S, Argoul P (2011) Discrete approaches for crowd movement modelling. Eur J Comput Mech 20(1–4):189–206MATHGoogle Scholar
  19. 19.
    Pécol P, Dal Pont S, Erlicher S, Argoul P (2011) Smooth/non-smooth contact modeling of human crowds movement: numerical aspects and application to emergency evacuations. Ann Solid Struct Mech 2(2–4):69–85CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Laboratorio Lagrange, Dipartimento di Engegneria Civile e Computer ScienceUniversità di Roma “Tor Vergata”RomeItaly

Personalised recommendations