Skip to main content
Log in

Dynamics of masonry walls connected by a vibrating cable in a historic structure

  • Nonlinear Dynamics, Identification and Monitoring of Structures
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

An original parametric model is presented to describe the modal interactions characterizing the linearized free dynamics of a cable–beam system. The structural system is composed by two vertical cantilever beams, connected by a suspended nonlinear cable. A closed form solution is achieved for the linear eigenproblem governing the undamped small-amplitude vibrations. The eigensolution shows a rich scenario of frequency crossing and veering phenomena between global modes, dominated by the beam dynamics, and local modes, dominated by the cable vibrations. Veering phenomena are accompanied by modal hybridization processes. The role played by different parameters is discussed, with focus on the resonance regions. The discussion allows the identification of an updated set of parameters, which offers a satisfying explanation of some unexpected dynamic interactions, observed in the experimental behavior of the masonry walls of the Basilica of Collemaggio, a historic structure heavily damaged by the 2009 L’Aquila earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alaggio R, Bedon C, Benedettini F, Dilena M, Morassi A (2015) Ambient vibration testing and structural identification of a cable-stayed bridge. Proceedings of IOMAC 15: 6th international operational modal analysis conference, 12–14 May 2015, Gijón, Spain, ISBN: 978-84-617-3880-9

  2. Antonacci E, De Stefano A, Gattulli V, Lepidi M, Matta E (2012) Comparative study of vibration-based parametric identification techniques for a three-dimensional frame structure. J Struct Control Health Monit 19(5):579–608

    Article  Google Scholar 

  3. Benedettini F, Gentile C (2011) Operational modal testing and FE model tuning of a cable-stayed bridge. Eng Struct 33:2063–2073

    Article  Google Scholar 

  4. Benedettini F, Rega G (1978) Non-linear dynamics of an elastic cable under planar excitation. Int J Non-Linear Mech 22(6):851–872

    MATH  Google Scholar 

  5. Benedettini F, Rega G, Vestroni F (1986) Modal coupling in the free nonplanar finite motion of an elastic cable. Meccanica 21(1):38–46

    Article  MATH  Google Scholar 

  6. Benedettini F, Rega G, Alaggio R (1995) Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J Sound Vib 182(5):775–798

    Article  ADS  Google Scholar 

  7. Caetano E, Cunha A, Gattulli V, Lepidi M (2008) Cable-deck dynamic interactions at the International Guadiana Bridge: on-site measurements and finite element modelling. J Struct Control Health Monit 15(3):237–264

    Article  Google Scholar 

  8. Ewins E (2000) Modal testing: theory, practice and application. Research Studies Press, Baldock

    Google Scholar 

  9. Farrar CR, Worden K (2013) Structural health monitoring: a machine learning perspective. Wiley, New York

    Google Scholar 

  10. Foti D, Gattulli V, Potenza F (2014) Output-only modal identification of a damaged building through rapid dynamic testing for post-earthquake retrofitting interventions. Comput Aided Civil Infrastruct Eng 29(9):659–675

    Article  Google Scholar 

  11. Gattulli V, Lepidi M (2003) Nonlinear interactions in the planar dynamics of cable-stayed beam. Int J Solids Struct 40(18):4729–4748

    Article  MATH  Google Scholar 

  12. Gattulli V, Lepidi M (2007) Localization and veering in the dynamics of cable-stayed bridges. Comput Struct 85(21):1661–1678

    Article  Google Scholar 

  13. Gattulli V, Antonacci E, Vestroni F (2013) Field observations and failure analysis of the basilica S. Maria di Collemaggio after the 2009 L’Aquila earthquake. Eng Fail Anal 34:715–734

    Article  Google Scholar 

  14. Irvine HM (1981) Cable structures. The Massachusetts Institute of Technology Press, Cambridge

    Google Scholar 

  15. Lepidi M (2013) Multi-parameter perturbation methods for the eigensolution sensitivity analysis of nearly-resonant non-defective multi-degree-of-freedom systems. J Sound Vib 332(4):1011–1032

    Article  ADS  Google Scholar 

  16. Lepidi M, Gattulli V (2014) A parametric multi-body section model for modal interactions of cable-supported bridges. J Sound Vib 333(19):4579–4596

    Article  ADS  Google Scholar 

  17. Lepidi M, Gattulli V (2016) Non-linear interactions in the flexible multi-body dynamics of cable-supported bridge cross-sections. Int J Non-Linear Mech 80:14–28

    Article  Google Scholar 

  18. Lepidi M, Piccardo G (2015) Aeroelastic stability of a symmetric multi-body section model. Meccanica 50(3):731–749

    Article  MathSciNet  MATH  Google Scholar 

  19. Luongo A (1995) Eigensolutions of perturbed nearly defective matrices. J Sound Vib 185(3):377–395

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Luongo A, Rega G, Vestroni F (1984) Planar non-linear free vibrations of elastic cable. Int J Non-Linear Mech 19(1):39–52

    Article  MATH  Google Scholar 

  21. Potenza F, Federici F, Lepidi M, Gattulli V, Graziosi F, Colarieti A (2015) Long-term structural monitoring of the damaged Basilica S. Maria di Collemaggio through a low-cost wireless sensor network. J Civil Struct Health Monit 5:655–676

    Article  Google Scholar 

  22. Rega G (2004) Nonlinear vibrations of suspended cables—Part I: modeling and analysis. Appl Mech Rev 57(6):444–478

    ADS  Google Scholar 

  23. Rega G, Vestroni F, Benedettini F (1984) Parametric analysis of large amplitude free vibrations of a suspended cable. Int J Solids Struct 20:95–105

    Article  MATH  Google Scholar 

  24. Stoneham AM, Gavartin JL (2007) Dynamics at the nanoscale. Mater Sci Eng C 27(5–8):972–980

    Article  Google Scholar 

  25. Toti J, Gattulli V, Sacco E (2015) Nonlocal damage propagation in the dynamics of masonry elements. Comput Struct 152:215–227

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the Italian Government under Cipe resolution n.135 (Dec. 21, 2012), project INnovating City Planning through Information and Communication Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Gattulli.

Appendix

Appendix

1.1 Characteristic equation

The frequencies \(\beta_{b}\) of the beam eigenfunctions are the infinite positive roots of a characteristic equation, which is given by the singularity condition

$$\det \left( {{\mathbf{B}}(\beta_{b} )} \right) = 0$$
(20)

where the characteristic 8-by-8 matrix \({\mathbf{B}}(\beta_{b} )\) can be expressed

$${\mathbf{B}}(\beta_{b} ) = \left( {\begin{array}{*{20}c} {{\mathbf{B}}_{ 1} (\beta_{b} )} & {{\mathbf{B}}_{ 2} (\beta_{b} )} \\ {{\mathbf{B}}_{ 2} (\beta_{b} )} & {{\mathbf{B}}_{ 1} (\beta_{b} )} \\ \end{array} } \right)$$
(21)

and the 4-by-4 submatrices are

$$\begin{aligned} & {\mathbf{B}}_{ 1} (\beta_{b} ) = \left( {\begin{array}{*{20}c} {C_{c} (\beta_{b} )} & {S_{c} (\beta_{b} )} & {Ch_{c} (\beta_{b} )} & {Sh_{c} (\beta_{b} )} \\ { - B_{s} (\beta_{b} )} & { - B_{c} (\beta_{b} )} & { - Bh_{s} (\beta_{b} )} & { - Bh_{c} (\beta_{b} )} \\ {\beta_{b} } & 0 & {\beta_{b} } & 0 \\ 0 & 1 & 0 & 1 \\ \end{array} } \right) \\ & {\mathbf{B}}_{ 2} (\beta_{b} ) = \hat{e}(\beta_{b} )\,\left( {\begin{array}{*{20}c} {\sin (\beta_{b} )} & {\cos (\beta_{b} )} & {\sinh (\beta_{b} )} & {\cosh (\beta_{b} )} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right) \\ \end{aligned}$$
(22)

The \(\beta_{b}\)-dependent auxiliary functions read

$$\begin{aligned} & B_{c} (\beta_{b} ) = \beta_{b}^{2} \cos \beta_{b} \\ & B_{s} (\beta_{b} ) = \beta_{b}^{2} \sin \beta_{b} \\ & Bh_{c} (\beta_{b} ) = \beta_{b}^{2} \cosh \beta_{b} \\ & Bh_{s} (\beta_{b} ) = \beta_{b}^{2} \sinh \beta_{b} \\ & C_{c} (\beta_{b} ) = - \chi_{b} \beta_{b}^{3} \cos \beta_{b} - \hat{e}(\beta_{b} )\sin \beta_{b} \\ & S_{c} (\beta_{b} ) = \chi_{b} \beta_{b}^{3} \sin \beta_{b} - \hat{e}(\beta_{b} )\cos \beta_{b} \\ & Ch_{c} (\beta_{b} ) = \chi_{b} \beta_{b}^{3} \cosh \beta_{b} - \hat{e}(\beta_{b} )\sinh \beta_{b} \\ & Sh_{c} (\beta_{b} ) = \chi_{b} \beta_{b}^{3} \sinh \beta_{b} - \hat{e}(\beta_{b} )\cosh \beta_{b} \\ \end{aligned}$$
(23)

while the implicit \(\beta_{b}\)—dependence of the function

$$\hat{e}(\beta_{b} ) = \frac{\alpha }{{\left\{ {1 + \left[ {\frac{{\lambda^{2} }}{{\beta_{c}^{2} }}\left( {1 - \frac{2}{{\beta_{c} }}\tan\frac{{\beta_{c} }}{2}} \right)} \right]} \right\}}}$$
(24)

follows from the relation (10).

1.2 Eigenfunctions

The beam and cable eigenfunctions are

$$\begin{aligned} \varphi_{b1} (x_{b} ) = & C_{1} \sin (\beta_{b} x_{b} ) + C_{2} \cos (\beta_{b} x_{b} ) \\ & + C_{3} \sinh (\beta_{b} x_{b} ) + C_{4} \cosh (\beta_{b} x_{b} ) \\ \varphi_{b2} (x_{b} ) = & C_{5} \sin (\beta_{b} x_{b} ) + C_{6} \cos (\beta_{b} x_{b} ) \\ & + C_{7} \sinh (\beta_{b} x_{b} ) + C_{8} \cosh (\beta_{b} x_{b} ) \\ \varphi_{c} (x_{c} ) = & C_{9} \sin (\beta_{c} x_{c} ) + C_{10} \sin (\beta_{c} x_{c} ) + \frac{{8\mu \,\nu \,\tilde{e}}}{{\beta_{c}^{2} }} \\ \end{aligned}$$
(25)

If \(C_{1}\) is intended as indeterminate modal amplitude, the other coefficients read

$$\begin{aligned} & C_{2} = - C_{1} \frac{{\sin \beta_{b} + \sinh \beta_{b} }}{{\cos \beta_{b} + \cosh \beta_{b} }} \\ & C_{3} = - C_{1} \\ & C_{4} = - C_{1} \frac{{\sin \beta_{b} - \sinh \beta_{b} }}{{\cos \beta_{b} + \cosh \beta_{b} }} \\ & C_{5} = - 2C_{1} \hat{e}(\beta_{b} )M_{c} (\beta_{b} )P_{d} (\beta_{b} )D(\beta_{b} ) \\ & C_{6} = 2C_{1} \hat{e}(\beta_{b} )M_{c} (\beta_{b} )P_{d} (\beta_{b} )D(\beta_{b} ) \\ & C_{7} = 2C_{1} \hat{e}(\beta_{b} )M_{s} (\beta_{b} )P_{d} (\beta_{b} )D(\beta_{b} ) \\ & C_{8} = - 2C_{1} \hat{e}(\beta_{b} )M_{s} (\beta_{b} )P_{d} (\beta_{b} )D(\beta_{b} ) \\ & C_{9} = \frac{{8\mu {\kern 1pt} \nu {\kern 1pt} \tilde{e}}}{{\beta_{c}^{2} }}\frac{{(\cos \beta_{c} - 1)}}{{\sin \beta_{c} }} \\ & C_{10} = - \frac{{8\mu {\kern 1pt} \nu {\kern 1pt} \tilde{e}}}{{\beta_{c}^{2} }} \\ \end{aligned}$$
(26)

where the following auxiliary functions have been introduced

$$\begin{aligned} & D(\beta_{b} ) = \left( {M_{c} \left( {\beta_{b} } \right)\left[ {\chi \beta_{b}^{3} Q\left( {\beta_{b} } \right) - 2\hat{e}\left( {\beta_{b} } \right)P_{d}( {\beta_{b} }} \right]} \right)^{ - 1} \\ &P_{d} \left( {\beta_{b} } \right) = \cos \beta_{b} \sinh \beta_{b} - \cosh \beta_{b} \sin \beta_{b} \\ &Q({\beta_{b} }) = \cos \left( {\beta_{b}^{2} } \right) + 2\cos \left( {\beta_{b} } \right)\cosh \left( {\beta_{b} } \right) + \\ &\quad + \cosh \left( {\beta_{b}^{2} } \right) + \sin \left( {\beta_{b}^{2} } \right) - \sinh \left( {\beta_{b}^{2} } \right) \\ & M_{c} ({\beta_{b} }) = \cos \beta_{b} + \cosh \beta_{b} \\ & M_{s} ({\beta_{b} }) = \sin \beta_{b} + \sinh \beta_{b} \\ \end{aligned}$$
(27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gattulli, V., Lepidi, M., Potenza, F. et al. Dynamics of masonry walls connected by a vibrating cable in a historic structure. Meccanica 51, 2813–2826 (2016). https://doi.org/10.1007/s11012-016-0509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0509-9

Keywords

Navigation