Advertisement

Meccanica

, Volume 52, Issue 3, pp 633–644 | Cite as

Patient-specific finite element analysis of popliteal stenting

  • Michele Conti
  • Michele Marconi
  • Giulia Campanile
  • Alessandro Reali
  • Daniele Adami
  • Raffaella Berchiolli
  • Ferdinando Auricchio
Advances in Biomechanics: from foundations to applications

Abstract

Nitinol self-expanding stents are used for the endovascular management of peripheral artery diseases of the popliteal artery, which is located behind the knee joint. Unfortunately, the complex kinematics of the artery during the leg flexion leads to severe loading conditions, favouring the mechanical failure of the stent, calling for a specific biomechanical analysis. For this reason, in the present study we reconstruct by medical image analysis the patient-specific popliteal kinematics during leg flexion, which is subsequently exploited to compute the mechanical response of a stent model, virtually implanted in the artery by structural finite element analysis (FEA). The medical image analysis indicates a non-uniform configuration change of the artery during the leg flexion, leading to an increase of the vessel curvature above the knee. The computed mechanical response of the stent reflects the non-uniform configuration change of the artery as after the flexion the average stress is higher in the part of the stent located above the knee. Although the proposed analysis is limited to a case-study, it shows the capability of patient-specific FEA simulations to compute the mechanical response of a stent model subjected to the complex and severe loading conditions of the popliteal artery during leg flexion.

Keywords

Finite element analysis (FEA) Biomechanics Popliteal stenting Patient-specific Nitinol 

Notes

Acknowledgments

This work is partially funded by: ERC Starting Grant through the Project ISOBIO: Isogeometric Methods for Biomechanics (No. 259229); Ministero dell’Istruzione, dell’Universitá e della Ricerca through the Project No. 2010BFXRHS; iCardioCloud project by Cariplo Foundation (No. 2013-1779) and Lombardy Region (No. 42938382; No. 46554874). The authors acknowledge MD Mauro Ferrari (clinical support), Eng. Stefania Marconi (medical image elaboration) and the support of Regione Lombardia and CINECA Consortium through the grant LISA 2013 (high-performance computing).

Compliance with ethical standards

Conflicts of interest

The authors have no commercial, proprietary, or financial interest in any products or companies described in this paper.

References

  1. 1.
    Wright LB, Matchett WJ, Cruz CP, James CA, Culp WC, Eidt JF, McCowan TC (2004) Popliteal artery disease: diagnosis and treatment. Radiographics 24(2):467–479. doi: 10.1148/rg.242035117 CrossRefGoogle Scholar
  2. 2.
    Norgren L, Hiatt W, Dormandy J, Nehler M, Harris K, Fowkes F (2007) Inter-society consensus for the management of peripheral arterial disease (TASC ii). J Vasc Surg 45(1):S5–S67. doi: 10.1016/j.jvs.2006.12.037 CrossRefGoogle Scholar
  3. 3.
    Ravn H, Wanhainen A, Bjrck M (2007) Surgical technique and long-term results after popliteal artery aneurysm repair: results from 717 legs. J Vasc Surg 46(2):236–243. doi: 10.1016/j.jvs.2007.04.018 CrossRefGoogle Scholar
  4. 4.
    Cina CS (2010) Endovascular repair of popliteal aneurysms. J Vasc Surg 51(4):1056–1060. doi: 10.1016/j.jvs.2009.09.008 CrossRefGoogle Scholar
  5. 5.
    Huang Y, Gloviczki P (2008) Popliteal artery aneurysms: rationale, technique, and results of endovascular treatment. Perspect Vasc Surg Endovasc Ther 20(2):201–213. doi: 10.1177/1531003508320846 CrossRefGoogle Scholar
  6. 6.
    Huang Y, Gloviczki P, Noel AA, Sullivan TM, Kalra M, Gullerud RE, Hoskin TL, Bower TC (2007) Early complications and long-term outcome after open surgical treatment of popliteal artery aneurysms: Is exclusion with saphenous vein bypass still the gold standard? J Vasc Surg 45(4):706–715.e1. doi: 10.1016/j.jvs.2006.12.011 CrossRefGoogle Scholar
  7. 7.
    Tielliu IF, Zeebregts CJ, Vourliotakis G, Bekkema F, van den Dungen JJ, Prins TR, Verhoeven EL (2010) Stent fractures in the hemobahn/viabahn stent graft after endovascular popliteal aneurysm repair. J Vasc Surg 51(6):1413–1418. doi: 10.1016/j.jvs.2009.12.071. http://www.sciencedirect.com/science/article/pii/S0741521410000364
  8. 8.
    Yushkevich P, Piven J, Hazlett H, Smith R, Ho S, Gee J, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31:1116–1128CrossRefGoogle Scholar
  9. 9.
    Auricchio F, Conti M, Marconi S, Reali A, Tolenaar JL, Trimarchi S (2013) Patient-specific aortic endografting simulation: from diagnosis to prediction. Comput Biol Med 43(4):386–394. doi: 10.1016/j.compbiomed.2013.01.006. http://www.sciencedirect.com/science/article/pii/S0010482513000206
  10. 10.
    Auricchio F, Conti M, De Beule M, De Santis G, Verhegghe B (2011) Carotid artery stenting simulation: from patient-specific images to finite element analysis. Med Eng Phys 33:281–289CrossRefGoogle Scholar
  11. 11.
    Conti M, Auricchio F, De Beule M, Verhegghe B (2009) Numerical simulation of Nitinol peripheral stents: from laser-cutting to deployment in a patient specific anatomy. In: Proceeding of ESOMAT 2009:06008. doi: 10.1051/esomat
  12. 12.
    Conti M, Van Loo D, Auricchio F, De Beule M, De Santis G, Verhegghe B, Pirrelli S, Odero A (2011) Impact of carotid stent cell design on vessel scaffolding: a case study comparing experimental investigation and numerical simulations. J Endovasc Ther 18:397–406CrossRefGoogle Scholar
  13. 13.
    Rebelo N, Walker N, Foadian H (2001) Simulation of implantable stents. Abaqus User’s Conference 143:421–434Google Scholar
  14. 14.
    Auricchio F, Taylor R (1997) Shape-memory alloys: macromodeling and numerical simulations of the superelastic behavior. Comput Methods Appl Mech Eng 146:281–312ADSCrossRefMATHGoogle Scholar
  15. 15.
    Lubliner J, Auricchio F (1996) Generalized plasticity and shape memory alloy. Int J Solid Struct 33:991–1003CrossRefMATHGoogle Scholar
  16. 16.
    Kleinstreuer C, Li Z, Basciano C, Seelecke S, Farber M (2008) Computational mechanics of nitinol stent grafts. J Biomech 41:2370–2378CrossRefGoogle Scholar
  17. 17.
    Piccinelli M, Veneziani A, Steinman D, Remuzzi A, Antiga L (2009) A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans Med Imaging 28(8):1141–1155CrossRefGoogle Scholar
  18. 18.
    Thomas J, Antiga L, Che S, Milner J, Hangan Steinman D, Spence J, Kutt B, Steinman D (2005) Variation in the carotid bifurcation geometry of young versus older adults: implications for geometric risk of atherosclerosis. Stroke 36:2450–2456ADSCrossRefGoogle Scholar
  19. 19.
    Allie D, Hebert C, Walker C (2004) Nitinol stent fractures in the SFA. Endovasc Today 7:22–34Google Scholar
  20. 20.
    Scheinert D, Scheinert S, Sax J, Piorkowski C, Brunlich S, Ulrich M, Biamino G, Schmidt A (2005) Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol 45(2):312–315. doi: 10.1016/j.jacc.2004.11.026. http://www.sciencedirect.com/science/article/pii/S0735109704022570
  21. 21.
    Kapnisis KK, Halwani DO, BrottPeter BC, Anderson G, Lemons JE, Anayiotos AS (2012) Stent overlapping and geometric curvature influence the structural integrity and surface characteristics of coronary Nitinol stents. J Mech Behav Biomed Mater 20:227–236. doi: 10.1016/j.jmbbm.2012.11.006 CrossRefGoogle Scholar
  22. 22.
    Robertson S, Pelton A, Ritchie R (2012) Mechanical fatigue and fracture of nitinol. Int Mater Rev 57(1):1–37CrossRefGoogle Scholar
  23. 23.
    Wensing P, Scholten F, Buijs P, Hartkamp M, Mali W, Hillen B (1995) Arterial tortuosity in the femoropopliteal region during knee flexion: a magnetic resonance angiographic study. J Anat 187(1):133–139Google Scholar
  24. 24.
    Cheng C, Choi G, Herfkens R, Taylor C (2010) The effect of aging on deformations of the superficial femoral artery resulting from hip and knee flexion: potential clinical implications. J Vasc Interv Radiol 21(2):195–202CrossRefGoogle Scholar
  25. 25.
    Smouse H, Nikanorov A, LaFlash D (2005) Biomechanical forces in the femoropopliteal arterial segment what happens during extremity movement and what is the effect on stenting? Endovasc Today 4:60–66Google Scholar
  26. 26.
    Cheng CP, Wilson NM, Hallett RL, Herfkens RJ, Taylor CA (2006) In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J Vasc Interv Radiol 17(6):979–987. doi: 10.1097/01.RVI.0000220367.62137.E8 CrossRefGoogle Scholar
  27. 27.
    Choi G, Cheng C, Wilson N, Taylor C (2009) Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Ann Biomed Eng 37(1):14–33. doi: 10.1007/s10439-008-9590-0 CrossRefGoogle Scholar
  28. 28.
    Jonker F, Schlosser F, Moll F, Muhs B (2008) Dynamic forces in the SFA and popliteal artery during knee flexion. Endovasc Today 53:53–58Google Scholar
  29. 29.
    Klein AJ, James Chen S, Messenger JC, Hansgen AR, Plomondon ME, Carroll JD, Casserly IP (2009) Quantitative assessment of the conformational change in the femoropopliteal artery with leg movement. Catheter Cardiovasc Interv 74(5):787–798. doi: 10.1002/ccd.22124 CrossRefGoogle Scholar
  30. 30.
    Diehm N, Sin S, Hoppe H, Baumgartner I, Büchler P (2011) Computational biomechanics to simulate the femoropopliteal intersection during knee flexion: a preliminary study. J Endovasc Ther 18(3):388–396CrossRefGoogle Scholar
  31. 31.
    Ganguly A, Simons J, Schneider A, Keck B, Bennett NR, Herfkens RJ, Coogan SM, Fahrig R (2011) In-vivo imaging of femoral artery Nitinol stents for deformation analysis. J Vasc Interv Radiol 22(2):244–249. doi: 10.1016/j.jvir.2010.10.019 CrossRefGoogle Scholar
  32. 32.
    Young M, Streicher M, Beck R, van den Bogert A, Tajaddini A, Davis B (2012) Simulation of lower limb axial arterial length change during locomotion. J Biomech 45(8):1485–1490CrossRefGoogle Scholar
  33. 33.
    Ghriallais R, Bruzzi M (2013) Effects of knee flexion on the femoropopliteal artery: a computational study. Med Eng Phys 35(11):1620–1628. doi: 10.1016/j.medengphy.2013.05.015. http://www.sciencedirect.com/science/article/pii/S135045331300132X
  34. 34.
    MacTaggart JN, Phillips NY, Lomneth CS, Pipinos II, Bowen R, Baxter BT, Johanning J, Longo GM, Desyatova AS, Moulton MJ et al (2014) Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion. J Biomech 47(10):2249–2256CrossRefGoogle Scholar
  35. 35.
    Rebelo N, Fu R, Lawrenchuk M (2009) Study of a nitinol stent deployed into anatomically accurate artery geometry and subjected to realistic service loading. J Mater Eng Perform. doi: 10.1007/s11665-009-9375-0655-663 Google Scholar
  36. 36.
    Harvey S (2011) Nitinol stent fatigue in a peripheral human artery subjected to pulsatile and articulation loading. J Mater Eng Perform 20(4–5):697–705CrossRefGoogle Scholar
  37. 37.
    Petrini L, Wu W, Dordoni E, Meoli A, Migliavacca F, Pennati G (2012) Fatigue behaviour characterization of nitinol for peripheral stents. Funct Mater Lett 05(01):1250012ADSCrossRefGoogle Scholar
  38. 38.
    Meoli A, Dordoni E, Petrini L, Migliavacca F, Dubini G, Pennati G (2013) Computational modelling of in vitro set-ups for peripheral self-expanding Nitinol stents: the importance of stent–wall interaction in the assessment of the fatigue resistance. Cardiovasc Eng Technol 4(4):474–484CrossRefGoogle Scholar
  39. 39.
    Nikanorov A, Smouse H, Osman K, Bialas M, Shrivastava S, Schwartz L (2008) Fracture of self-expanding Nitinol stents stressed in vitro under simulated intravascular conditions. J Vascul Surg 48(2):435–440CrossRefGoogle Scholar
  40. 40.
    Muller-Hulsbeck S, Schafer P, Charalambous N, Yagi H, Heller M, Jahnke T (2010) Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design. J Endovasc Ther 17(6):767–776CrossRefGoogle Scholar
  41. 41.
    Ansari F, Pack LK, Brooks SS, Morrison TM (2013) Design considerations for studies of the biomechanical environment of the femoropopliteal arteries. J Vasc Surg 58(3):804–813CrossRefGoogle Scholar
  42. 42.
    Arena FJ (2005) Arterial kink and damage in normal segments of the superficial femoral and popliteal arteries abutting Nitinol stents a common. Vasc Dis Manag 2(5):160–164Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Michele Conti
    • 1
  • Michele Marconi
    • 2
  • Giulia Campanile
    • 1
  • Alessandro Reali
    • 1
    • 3
  • Daniele Adami
    • 2
  • Raffaella Berchiolli
    • 2
  • Ferdinando Auricchio
    • 1
  1. 1.Department of Civil Engineering and Architecture (DICAr)Pavia UniversityPaviaItaly
  2. 2.Vascular UnitIRCCS CisanelloPisaItaly
  3. 3.Institute for Advanced StudyTechnische Universität MünchenGarchingGermany

Personalised recommendations