Advertisement

Meccanica

, Volume 51, Issue 6, pp 1301–1320 | Cite as

Statements on nonlinear dynamics behavior of a pendulum, excited by a crank-shaft-slider mechanism

  • Rafael Henrique Avanço
  • Hélio Aparecido Navarro
  • Reyolando M. L. R. F. Brasil
  • José Manoel Balthazar
  • Átila Madureira Bueno
  • Angelo Marcelo Tusset
Article

Abstract

The nonlinear dynamics behavior analyzed, in this paper, consists in a pendulum vertically excited on the support by a crank-shaft-slider mechanism. The novelty is the obtainment and analysis of a mathematical model for the pendulum dynamics, under an excitation of a crank-slider, which is based on an extension of the mathematical model of the classical parametric pendulums. Through the modeling, it was verified that the nonlinear dynamics of the pendulum, excited by the crank-shaft-slider mechanism approaches to that of harmonic excitation, when one considered the length of the shaft is sufficient larger than the radius of the crank. The nonlinear dynamic analyses focused on observation of different kinds of motion for different values of dimensionless parameters of the adopted mathematical model. These parameters, includes the frequency of excitation, the amplitude and the geometry of the crank-shaft-slider mechanism. The adopted method of analyses used tools, such as, Lyapunov exponents, parameter space plots, basins of attractions, bifurcation diagrams, phase portraits, time histories and Poincaré sections. The kinds of motion include results on fixed point, oscillations, rotations, oscillations–rotations and chaotic motions.

Keywords

Pendulum Parametric Crank-shaft-slider Chaos 

List of symbols

a

Length of the crank rod

b

Length of the shaft

ε

a over b length ratio

m

Mass of pendulum

t

Time

l

Length of the pendulum

φ

Angle between b bar and vertical axis

θ

Angle of the crank rod

α

Pendulum rotation angle

τ

Dimensionless time

ω

Ratio between excitation and natural frequency

ω0

Natural frequency of the pendulum

λ

Maximum Lyapunov exponent

xp

Position of pendulum in x coordinate

yp

Position of pendulum in y coordinate

F

Dimensionless parameter relating the angles θ and φ

Notes

Acknowledgments

The authors would like to acknowledge the Brazilian agencies: CNPq, FAPESP and CAPES, for the financial support.

References

  1. 1.
    Leven RW, Koch BP (1981) Chaotic behavior of a parametrically excited damped pendulum. Phys Lett A 86(2):71–74. doi: 10.1016/0375-9601(81)90167-5 ADSCrossRefGoogle Scholar
  2. 2.
    Clifford MJ, Bishop SR (1995) Rotating periodic orbits of the parametrically excited pendulum. Phys Lett A 201(2):191–196. doi: 10.1016/0375-9601(95)00255-2 ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Clifford MJ, Bishop SR (1996) Locating oscillatory orbits of the parametrically-excited pendulum. J Aust Math Soc Ser B Appl Math 37(3):309–319. doi: 10.1017/S0334270000010687 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Xu Xu, Wiercigroch M, Cartmell MP (2005) Rotating orbits of a parametrically-excited pendulum. Chaos Solitons Fractals 23(5):1537–1548. doi: 10.1016/j.chaos.2004.06.053 ADSCrossRefMATHGoogle Scholar
  5. 5.
    Wiercigroch M (2005) A new concept of energy extraction from waves via parametric pendulor. UK patent applicationGoogle Scholar
  6. 6.
    Brasil RMLRF, Amaral L, Balthazar JM (2013) A crank-shaft-slider energy harvester of sea waves. In: Proceedings of 14th Pan-American congress of applied mechanics, vol 1. Santiago, Chile, pp 35–36Google Scholar
  7. 7.
    Kecik K, Warminski J (2012) Chaos in mechanical pendulum-like system near main parametric resonance. In: Procedia IUTAM: IUTAM symposium on 50 years of chaos: applied and theoretical vol 5. pp 249–258. doi: 10.1016/j.piutam.2012.06.034
  8. 8.
    Lenci S, Rega G (2011) Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: a dynamical integrity perspective. Phys D 240:814–824. doi: 10.1016/j.physd.2010.12.014 CrossRefMATHGoogle Scholar
  9. 9.
    Warminski J, Kecik K (2006) Autoparametric vibrations of a nonlinear system with pendulum. Math Prob Eng. doi: 10.1155/MPE/2006/80705 MathSciNetMATHGoogle Scholar
  10. 10.
    Warminski J, Kecik K (2009) Instabilities in the main parametric resonance area of a mechanical system with a pendulum. J Sound Vib 322(3):612–628. doi: 10.1016/j.jsv.2008.06.042 ADSCrossRefGoogle Scholar
  11. 11.
    Lenci S, Pavlovskaia E, Rega G, Wiercigroch M (2008) Rotating solutions and stability of parametric pendulum by perturbation method. J Sound Vib 310:243–259. doi: 10.1016/j.jsv.2007.07.069 ADSCrossRefGoogle Scholar
  12. 12.
    Wang R, Jing Z (2004) Chaos control of chaotic pendulum system. Chaos Solitons Fractals 21:201–207. doi: 10.1016/j.chaos.2003.10.011 ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Yokoi Y, Hikihara T (2011) Tolerance of start-up control of rotation in parametric pendulum by delayed feedback. Phys Lett A 375:1779–1783. doi: 10.1016/j.physleta.2011.02.022 ADSCrossRefMATHGoogle Scholar
  14. 14.
    Lenci S, Brocchini M, Lorenzoni C (2012) Experimental rotations of a pendulum on water waves. J Comput Nonlinear Dyn 7(1):011007. doi: 10.1115/1.4004547 CrossRefGoogle Scholar
  15. 15.
    Litak G, Wiercigroch M, Horton BW, Xu X (2010) Transient chaotic behavior versus periodic motion of a parametric pendulum by recurrence plots. Zamm J Appl Math Mech 90(1):33–41. doi: 10.1002/zamm.200900290 CrossRefMATHGoogle Scholar
  16. 16.
    Alevras P, Yurchenko D (2014) Naess A (2014) Stochastic synchronization of rotation of rotating parametric pendulums. Meccanica 49(8):1945–1954. doi: 10.1007/s11012-014-9955-4 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yang CC (2013) Synchronizations of rotating pendulums via self-learning terminal sliding-mode control subject to input nonlinearity. Nonlinear Dyn 72(3):695–705. doi: 10.1007/s11071-012-0746-y MathSciNetCrossRefGoogle Scholar
  18. 18.
    de Paula AS, Savi MA, Wiercigroch M, Pavlovskaia E (2012) Bifurcation control of a parametric pendulum. Int J Bifurc Chaos. doi: 10.1142/S0218127412501118 MATHGoogle Scholar
  19. 19.
    Szemplinska-Stupnicka W, Tyrkiel E (2002) Common features of the onset of the persistent chaos in nonlinear oscillators: a phenomenological approach. Nonlinear Dyn 27(3):271–293. doi: 10.1023/A:1014456416158 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Warminski J, Balthazar JM, Brasil RMLRF (2001) Vibrations of a non-ideal parametrically and self-excited model. J Sound Vib 245:363–374. doi: 10.1006/jsvi.2000.3515 ADSCrossRefMATHGoogle Scholar
  21. 21.
    Lenci S, Rega G (2006) Dynamical integrity of nonlinear mechanical oscillators. In: Proceedings of the 16th European conference of fracture, book title fracture of nano and engineering materials and structures, book part: C. Alexandroupolis, Greece, pp 811–812. doi: 10.1007/1-4020-4972-2_401
  22. 22.
    Belato D, Weber HI, Balthazar JM, Mook DT (2001) Chaotic vibrations of a nonideal eletro-mechanical system, 2001. Int J Solids Struct 38(10–13):1699–1706. doi: 10.1016/S0020-7683(00)00130-X CrossRefMATHGoogle Scholar
  23. 23.
    Belato D, Weber HI, Balthazar JM (2005) Using transient and steady state considerations to investigate the mechanism of loss of instability of a dynamical system. Appl Math Comput 164(2):605–613. In: 12th international workshop on dynamics and control. doi: 10.1016/j.amc.2004.06.100
  24. 24.
    Hsieh SR, Shaw SW (1993) The Dynamic stability and nonlinear resonance of a flexible connecting rod: continuos parameter model. J Nonlinear Dyn 4(6):573–603. doi: 10.1007/BF00162233 CrossRefGoogle Scholar
  25. 25.
    Halbig D, Beale DG (1995) Experimental observations of a flexible slider crank mechanism at very high speeds. J Nonlinear Dyn 7(3):365–384. doi: 10.1007/BF00046309 CrossRefGoogle Scholar
  26. 26.
    Wauer J, Bührle P (1997) Dynamics of a flexible slider-crank mechanism driven by a non-ideal source of energy. J Nonlinear Dyn 13(3):221–242. doi: 10.1023/A:1008210310226 CrossRefMATHGoogle Scholar
  27. 27.
    Goudas I, Stavrakis I, Natsiavas S (2004) Dynamics of slider-crank mechanisms with flexible supports and non-ideal forcing. J Nonlinear Dyn 35(3):205–227. doi: 10.1023/B:NODY.0000027914.66360.01 CrossRefMATHGoogle Scholar
  28. 28.
    Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. J Phys D Nonlinear Phenom 16(3):285–317. doi: 10.1016/0167-2789(85)90011-9 ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Butikov EI (1999) Parametric resonance. Comput Sci Eng 1(3):76–83. doi: 10.1109/5992.764219 CrossRefGoogle Scholar
  30. 30.
    Horton B, Sieber J, Thompson JMT, Wiercigroch M (2011) Dynamics of a nearly parametric pendulum. Int J Nonlinear Mech 46(2):436–442. doi: 10.1016/j.ijnonlinmec.2010.11.003 CrossRefGoogle Scholar
  31. 31.
    Balthazar JM, Tusset AM, Souza SLTD, Bueno AM (2012) Microcantilever chaotic motion suppression in tapping mode atomic force microscope. In: Proceedings of the Institution of Mechanical Engineers. Part C. J Mech Eng Sci 227:1730–1741. DOI: 10.1177/0954406212467933
  32. 32.
    Balthazar JM, Bassinello DG, Tusset AM, Bueno AM, Pontes BR Jr (2014) Nonlinear control in an electromechanical transducer with chaotic behavior. Meccanica 49(8):1859–1867. doi: 10.1007/s11012-014-9910-4 MathSciNetMATHGoogle Scholar
  33. 33.
    Nozaki R, Balthazar JM, Tusset AM, Pontes BR Jr, Bueno AM (2013) Nonlinear control system applied to atomic force microscope including parametric errors. J Control Autom Electr Syst 24:223–231. doi: 10.1007/s40313-013-0034-1 CrossRefGoogle Scholar
  34. 34.
    Tusset AM, Piccirillo V, Bueno AM, Balthazar JM, Sado D, Felix JLP, Brasil RMLRD (2015) Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J Vib Control 1:1–17. doi: 10.1177/1077546314564782 Google Scholar
  35. 35.
    Tusset AM, Balthazar JM, Chavarette FR, Felix JLP (2012) On energy transfer phenomena, in a nonlinear ideal and nonideal essential vibrating systems, coupled to a (MR) magneto-rheological damper. Nonlinear Dyn 69:1859–1880. doi: 10.1007/s11071-012-0391-5 MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Tusset AM, Balthazar JM, Bassinello DG, Pontes BR Jr, Felix JLP (2012) Statements on chaos control designs, including a fractional order dynamical system, applied to a MEMS comb-drive actuator. Nonlinear Dyn 69:1837–1857. doi: 10.1007/s11071-012-0390-6 MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Tusset AM, Bueno AM, Nascimento CB, Kaster MS, Balthazar JM (2013) Nonlinear state estimation and control for chaos suppression in MEMS resonator. Shock Vib 20:749–761. doi: 10.3233/SAV-130782 CrossRefGoogle Scholar
  38. 38.
    Tusset AM, Balthazar JM, Felix JLP (2013) On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls. J Vib Control 19:803–813. doi: 10.1177/1077546311435518 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Rafael Henrique Avanço
    • 1
  • Hélio Aparecido Navarro
    • 1
  • Reyolando M. L. R. F. Brasil
    • 2
  • José Manoel Balthazar
    • 3
  • Átila Madureira Bueno
    • 4
  • Angelo Marcelo Tusset
    • 5
  1. 1.Department of Mechanical EngineeringUniversity of São PauloSão CarlosBrazil
  2. 2.Federal University of ABCSanto AndréBrazil
  3. 3.Department of Mechanical Engineering at Technological Institute of AeronauticsSão José Dos CamposBrazil
  4. 4.UNESP: Sorocaba, Control and Automation EngineeringSorocabaBrazil
  5. 5.Department of MathematicsFederal University of Technology – ParanáPonta GrossaBrazil

Personalised recommendations