Skip to main content
Log in

Experiments of fine manipulation tasks with dexterous robotic hands

  • Soft Mechatronics
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, the experimental evaluation of fine manipulation tasks executed by the DEXMART Hand is presented. The robotic hand is characterized by a compliant actuation system and soft contact interfaces. The manipulation is controlled by feedback information acquired by optoelectronic tactile sensors integrated into the fingertips of the robotic hand. An impedance-like control scheme has been implemented to allow the simultaneous control of the finger positions and contact forces, thus preventing position drift caused by asymmetric force measurement between different sensors. This approach allows also to decouple the control of the normal force applied to the object to prevent slip from the control of the tangential forces applied to the object surface to perform manipulation. Moreover, the evaluation of manipulation tasks of soft objects with variable weight is presented to show the ability of the system to hold the object by applying the minimum required normal force to prevent slip. The performance evaluation has been carried out by considering fine manipulation tasks executed with a simplified setup composed by two opposed fingers, and manipulation tasks of various objects involving the whole DEXMART Hand are presented, as a demonstration of the device capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. EU Patent No. 0001400420.

  2. http://www-lar.deis.unibo.it/people/gpalli/files/ Experiments of Fine Manipulation Tasks with Dexterous Robotic Hands.mp4.

Abbreviations

\(\dot{q}\) :

Joint angular velocity vector

\(\dot{q}_d\) :

Joint angular velocity vector

\(\hat{f}_d\) :

Minimum-norm tendon force vector

\(\lambda \) :

Tendon null-space force scaling factor

\(\mu \) :

Surface friction coefficient

\(\varPhi ^{-1}(p)\) :

Finger inverse kinematic function

\(\tau \) :

Joint torque vector

\(\tau _d\) :

Desired joint torque vector

\(a_i\) :

Finger link lengths

\(e_0\) :

Contact point free-space motion (before contact)

\(e_c\) :

Contact point displacement due to the object deformation

\(e_f\) :

Joint position deviation caused by the contact force

F :

Reaction force due to the object deformation

f :

Tendon force vector

\(f_0\) :

Tendon threshold force vector

\(F_d\) :

Desired contact force

\(f_d\) :

Desired tendon force vector

\(f_k\) :

Tendon null-space force vector

\(F_m\) :

Measured contact force

\(F_{d_z}\) :

Normal desired contact force

\(F_{m_t}\) :

Measured tangential contact force

\(F_{m{\{x,y,z\}}}\) :

Measured contact force along \(\{x,y,x\}\) axis

g(q):

Gravity torque vector

H :

Tendon-joint coupling matrix

J :

Finger Jacobian matrix

\(K_D\) :

Joint velocity control gain matrix

\(K_P\) :

Joint position control gain matrix

\(K_T\) :

Contact force controller gain matrix

\(K_{\{1,2\}}\) :

Object elastic constants

l :

Tendon displacement vector

\(l_{i}\) :

Tendon displacements

\(p(q)=\varPhi (q)\) :

Cartesian fingertip position wrt \({\mathcal {F}}_b\)

\(p_{\{x,y,z\}}\) :

Fingertip position along \(\{x,y,z\}\) axis

q :

Finger joint angle vector

\(q_i\) :

Finger joint angles

R(q):

Rotation matrix between \({\mathcal {F}}_f\) and \({\mathcal {F}}_b\)

\(R_c^s(T)\) :

Rotation matrix between contact frame and the tactile sensor frame

\(R_s(q)\) :

Rotation matrix between the tactile sensor frame and \({\mathcal {F}}_b\)

\(r_{ij}\) :

Radii of the finger joint pulleys

T(q):

Coordinate transformation between \({\mathcal {F}}_f\) and \({\mathcal {F}}_b\)

v :

Manipulation controller auxiliary input

\({\mathcal {F}}_b\) :

Finger base reference frame

\({\mathcal {F}}_f\) :

Fingertip reference frame

References

  1. Berselli G, Piccinini M, Palli G, Vassura G (2011) Engineering design of fluid-filled soft covers for robotic contact interfaces: guidelines, nonlinear modeling, and experimental validation. IEEE Trans Robot 27(3):436–449

    Article  Google Scholar 

  2. Berselli G, Piccinini M, Vassura G (2010) On designing structured soft covers for robotic limbs with predetermined compliance. In: Proceedings of the ASME design engineering technical conference, vol 2, pp 165–174

  3. Berselli G, Piccinini M, Vassura G (2011) Comparative evaluation of the selective compliance in elastic joints for robotic structures. In: Proceedings IEEE international conference on robotics and automation, Shanghai, China, pp 4626–4631

  4. Biagiotti L, Lotti F, Melchiorri C, Palli G, Tiezzi P, Vassura G (2005) Development of UB Hand 3: early results. In: Proceedings IEEE international conference on robotics and automation, Barcelona, Spain, pp 4488–4493

  5. Bicchi A (2000) Hands for dextrous manipulation and robust grasping: a difficult road towards simplicity. IEEE Trans Robot Autom 16(6):652–662

    Article  Google Scholar 

  6. Birglen L, Laliberté T, Gosselin C (2008) Underactuated robotic hands, Springer tracts in advanced robotics, vol 40. Springer, Berlin

    Google Scholar 

  7. Borghesan G, Palli G, Melchiorri C (2011) Friction compensation and virtual force sensing for robotic hands. In: Proceedings IEEE international conference on robotics and automation, Shanghai, China, pp 4756–4761

  8. Carrozza MC, Cappiello G, Stellin G, Zaccone F, Vecchi F, Micera S, Dario P (2005) A cosmetic prosthetic hand with tendon driven under-actuated mechanism and compliant joints: ongoing research and preliminary results. In: Proceedings IEEE international conference on robotics and automation, Barcelona, Spain, pp 2661–2666

  9. Dahiya R, Metta G, Valle M, Sandini G (2010) Tactile sensing from humans to humanoids. IEEE Trans Robot 26(1):1–20

    Article  Google Scholar 

  10. De Maria G, Natale C, Pirozzi S (2012) Force/tactile sensor for robotic applications. Sens Actuators A Phys 175:60–72

    Article  Google Scholar 

  11. De Maria G, Natale C, Pirozzi S (2012) Tactile sensor for human-like manipulation. In: Proceedings IEEE RAS EMBS international conference on biomedical robotics and biomechatronics, pp 1686–1691

  12. De Maria G, Natale C, Pirozzi S (2013) Slipping control through tactile sensing feedback. In: Proceedings IEEE international conference on robotics and automation, pp 3523–3528

  13. De Maria G, Natale C, Pirozzi S (2013) Tactile data modeling and interpretation for stable grasping and manipulation. Robot Auton Syst 61(9):1008–1020

    Article  Google Scholar 

  14. Grebenstein M, Chalon M, Friedl W, Haddadin S, Wimböck T, Hirzinger G, Siegwart R (2012) The hand of the DLR hand arm system: designed for interaction. Int J Robot Res 31(13):1531–1555

    Article  Google Scholar 

  15. Gunji D, Mizoguchi Y, Teshigawara S, Ming A, Namiki A, Ishikawaand M, Shimojo M (2008) Grasping force control of multi-fingered robot hand based on slip detection using tactile sensor. In: Proceedings IEEE international conference on robotics and automation, pp 2605–2610

  16. Janabi-Sharifi F, Hayward V, Chen CSJ (2000) Discrete-time adaptive windowing for velocity estimation. IEEE Trans Control Syst Technol 8(6):1003–1009

    Article  Google Scholar 

  17. Kawasaki H, Komatsu T, Uchiyama K (2002) Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans Mechatron 7(3):296–303

    Article  Google Scholar 

  18. Liu H, Meusel P, Hirzinger G, Jin M, Liu Y, Xie Z (2008) The modular multisensory DLR-HIT-hand: hardware and software architecture. IEEE/ASME Trans Mechatron 13(4):461–469

    Article  Google Scholar 

  19. Ma R, Dollar A (2011) On dexterity and dexterous manipulation. In: Proceedings international conference on advanced robotics, pp 1–7

  20. Melchiorri C, Palli G, Berselli G, Vassura G (2013) Development of the UB-hand IV: overview of design solutions and enabling technologies. IEEE Robot Autom Mag 8(3):72–81

    Article  Google Scholar 

  21. Morecki A, Busko Z, Gasztold H, Jaworek K (1980) Synthesis and control of the anthropomorphic two-handed manipulator. In: Proceedings international symposium on industrial robotics, Milan, Italy, pp 461–474

  22. Namiki A, Imai Y, Ishikawa M, Kaneko M (2003) Development of a high-speed multifingered hand system and its application to catching. In: Proceedings international conference on intelligent robots and systems, pp 2666–2671

  23. Palli G, Borghesan G, Melchiorri C (2012) Modeling, identification and control of tendon-based actuation systems. IEEE Trans Robot 28(2):277–290

    Article  Google Scholar 

  24. Palli G, Melchiorri C, Vassura G, Berselli G, Pirozzi S, Natale C, De Maria, G, May C (2012) Innovative technologies for the next generation of robotic hands. In: Siciliano B (ed) Advanced bimanual manipulation, Springer Tracts in Advanced Robotics, Springer, Berlin, vol 80, pp 173–218

  25. Palli G, Melchiorri C, Vassura G, Scarcia U, Moriello L, Berselli G, Cavallo A, De Maria G, Natale C, Pirozzi S, May C, Ficuciello F, Siciliano B (2014) The DEXMART hand: mechatronic design and experimental evaluation of synergy-based control for human-like grasping. Int J Robot Res 33(5):799–824

    Article  Google Scholar 

  26. Palli G, Natale C, May C, Melchiorri C, Würtz T (2013) Modeling and control of the twisted string actuation system. IEEE/ASME Trans Mechatron 18(2):664–673

    Article  Google Scholar 

  27. Palli G, Pirozzi S (2011) Force sensor based on discrete optoelectronic components and compliant frames. Sens Actuators A Phys 165:239–249

    Article  Google Scholar 

  28. Palli G, Pirozzi S (2012) A miniaturized optical force sensor for tendon-driven mechatronic systems: design and experimental evaluation. Mechatronics 22(8):1097–1111

    Article  Google Scholar 

  29. Palli G, Pirozzi S (2013) Optical force sensor for the DEXMART Hand twisted string actuation system. Sens Transducers 148(1):28–32

    Google Scholar 

  30. Palli G, Pirozzi S (2013) Optical sensor for angular position measurements embedded in robotic finger joints. Adv Robot 27(15):1209–1220

    Article  Google Scholar 

  31. Palli G, Pirozzi S (2014) Integration of an optical force sensor into the actuation module of the DEXMART Hand. Int J Robot Autom 29(2):193–201

    Google Scholar 

  32. Pirozzi S, Grassia L (2009) Tactile sensor based on led-phototransistor couples. In: Proceedings international conference on humanoid robots, Paris, France, pp 2666–2671

  33. Siciliano B, Khatib O (eds) (2008) Springer handbook of robotics. Springer, Berlin

    MATH  Google Scholar 

  34. Teshigawara S, Tsutsumi T, Shimizu S, Suzuki Y, Ming A, Ishikawa M, Shimojo M (2011) Highly sensitive sensor for detection of initial slip and its application in a multi-fingered robot hand. In: Proceedings IEEE international conference on robotics and automation, pp 1097–1102

  35. Wettels N, Santos V, Johansson R, Loeb G (2008) Biomimetic tactile sensor array. Adv Robot 22(8):829–849

    Article  Google Scholar 

  36. Wimböck T, Ott C, Hirzinger G (2008) Analysis and experimental evaluation of the Intrinsically Passive Controller (IPC) for multifingered hands. In: Proceedings IEEE international conference on robotics and automation, pp 278–284

  37. Wimboeck T, Ott C, Albu-Schffer A, Hirzinger G (2012) Comparison of object-level grasp controllers for dynamic dexterous manipulation. Int J Robot Res 31(1):3–23. doi:10.1177/0278364911416526

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Palli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palli, G., Pirozzi, S., Natale, C. et al. Experiments of fine manipulation tasks with dexterous robotic hands. Meccanica 50, 2767–2780 (2015). https://doi.org/10.1007/s11012-015-0217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0217-x

Keywords

Navigation