Skip to main content
Log in

Threshold fracture energy in solid particle erosion: improved estimate for a rigid indenter impacting an elastic medium

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The case of a single erosion impact is considered. The paper improves and extends the results from Argatov and Mishuris (Philos Mag 93:2485, 2013), where a lower bound for the threshold fracture energy of a rigid axisymmetric indenter was obtained based on the notion of incubation time prior to fracture. In the presented study we define an exact value for the initial energy required for fracture initiation and compare it with previous results. The incubation time based fracture criterion is utilized in order to locate the time of the initial fracture, along with the associated radial position. A brief examination of the effects of different particle parameters on the initial fracture is conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Melosh HJ (1989) Impact cratering. Oxford University Press, New York

    Google Scholar 

  2. Śledź M, Bąk Ł, Stachowicz F, Zielecki W (2013) Analysis of the effect of shot peening on machanical properties of steel sheets used as screener sieve materials. J Phys Conf Ser 451:012029

    Article  ADS  Google Scholar 

  3. Lankford J Jr (2004) The role of dynamic material properties in the performance of ceramic armor. Int J Appl Ceram Technol 1:205–210

    Article  Google Scholar 

  4. Evans AG (1978) On impact damage in the elastic response regime. J Appl Phys 49:3304–3310

    Article  ADS  Google Scholar 

  5. Petrov YV, Morozov NF, Smirnov VI (2003) Structural macromechanics approach in dynamics of fracture. Fatigue Fract Eng Mater Struct 26:363–372

    Article  Google Scholar 

  6. Subhash G, Maiti S, Geubelle PH, Ghosh D (2008) Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics. J Am Ceram Soc 91:2777–2791

    Article  Google Scholar 

  7. Argatov II, Nazarov SA (2000) Comparison of the Griffith and Irwin criteria for a crack asymmetrically propagating in the place. Mater Sci 36:561–569

    Article  Google Scholar 

  8. Neal-Sturgess CE (2008) A direct derivation of the Griffith–Irwin relationship using a crack tip unloading stress wave model. arXiv:0810.2218

  9. Bagherifard S, Fernandez-Pariente I, Ghelichi R, Guagiano M (2014) Effect of severe shot peening on microstructure and fatigue strength of cast iron. Int J Fatigue 65:64–70

    Article  Google Scholar 

  10. Satapathy S (2001) Dynamic spherical cavity expansion in brittle ceramics. Int J Solids Struct 38:5833–5845

    Article  MATH  Google Scholar 

  11. Iyer KA (2007) Relationships between multiaxial stress states and internal fracture patterns in sphere-impacted silicon carbide. Int J Fract 146:1–18

    Article  Google Scholar 

  12. Jianming W, Feihong L, Feng Y, Gang Z (2011) Shot peening simulation based on SPH method. Int J Adv Manuf Technol 56:571–578

    Article  Google Scholar 

  13. Wang Y-F, Yang Z-G (2008) Finite element model of erosive wear on ductile and brittle materials. Wear 265:871–878

    Article  Google Scholar 

  14. Petrov YV (1996) Quantum analogy in the mechanics of fracture of solids. Phys Solid State 38:1846–1850

    ADS  Google Scholar 

  15. Petrov Y (2012) Incubation time based fracture mechanics. In: 19th European conference on fracture; fracture mechanics for durability

  16. Bratov V, Petrov Y (2007) Application of incubation time approach to simulate dynamic crack propogation. Int J Fract 146:53–60

    Article  Google Scholar 

  17. Zh-Ch O, Yan C, Duan Z-P, Pi A-G, Huang F-L (2012) Dynamic behaviors of load-carrying capacity of brittle materials. Int J Impact Eng 42:59–65

    Article  Google Scholar 

  18. Argatov II, Dmitriev NN, Petrov YuV, Smirnov VI (2009) Threshold erosion fracture in the case of oblique incidence. J Frict Wear 30:245–253

    Google Scholar 

  19. Morozov N, Petrov Yu (2000) Dynamics of fracture. Springer, Berlin

    Book  MATH  Google Scholar 

  20. Petrov YuV (2007) On the incubation stage of fracture and structural transformations in continuous media under pulse energy injection. Mech Solids 42:692–699

    Article  Google Scholar 

  21. Petrov Y (2014) Fracture, electric breakdown and phase transformations under impact loading. Proc Mater Sci 3:467–472

    Article  Google Scholar 

  22. Volkov GA, Gorbushin NA, Petrov YuV (2012) On the dependence of the threshold fracture energy of small erodent particles on their geometry in erosion fracture. Mech Solids 47:491

    Article  Google Scholar 

  23. Gorbushin NA, Volkov GA, Petrov YuV (2013) On the effect of the geometrical shape of a particle on threshold energy in erosion damage. Tech Phys 58:388–392

    Article  Google Scholar 

  24. Argatov I, Mishuris G, Petrov Yu (2013) Threshold fracture energy in solid particle erosion. Philos Mag 93:2485

    Article  ADS  Google Scholar 

  25. Shtaerman IY (1939) On the Hertz theory of local deformations resulting from the pressure of elastic solids. Doklady Akad Nauk SSSR 25:360 (in Russian)

    Google Scholar 

  26. Kilchevsky NA (1969) The theory of solid bodies collision. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  27. Galin LA (1946) Spatial contact problems of the theory of elasticity for punches of circular shape in planar projection. J Appl Math Mech (PMM) 10:425 (in Russian)

    MATH  MathSciNet  Google Scholar 

  28. Galin LA (2008) Contact problems—the legacy of L.A. Galin. Springer, Netherlands, p 266

    MATH  Google Scholar 

  29. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge, pp 76–79

    Book  MATH  Google Scholar 

  30. Petrov Y, Bratov V, Volkov G, Dolmatov E (2011) Incubation time based fracture mechanics and optimization of energy input in the fracture process of rocks. In: Zhou Y, Zhao J (eds) Advances in rock dynamics and applications. CRC Press, Boca Raton, pp 163–183

    Chapter  Google Scholar 

  31. Borodich FM (1989) Hertz contact problems for an anisotropic physically nonlinear elastic medium. Strength Mater 21:1668–1676

    Article  Google Scholar 

  32. Fischer-Cripps AC (2007) Introduction to contact mechanics. Springer, New York, pp 87–108

    Book  MATH  Google Scholar 

  33. Petrov YV (2004) Incubation time criterion and the pulsed strength of continua: fracture, cavitation, and electrical breakdown. Doklady Phys 49:246

    Article  ADS  Google Scholar 

  34. Petrov YuV, Smirnov VI (2010) Interrelation between the threshold characteristics of erosion and spall fracture. Tech Phys 55:23

    Google Scholar 

Download references

Acknowledgments

Yu.P. acknowledges Saint-Petersburg State University for research grants 6.38.243.2014 and 6.39.319.2014. G.M. and D.P. gratefully acknowledge the support of the European Union Seventh Framework Marie Curie Programme PARM-2 (project reference: PIAP-GA-2012-284544-PARM2), and M.W. acknowledges the European Union FP7 project INTERCER2 (reference: PIAP-GA-2011-286110-INTERCER2). All authors would like to thank Prof. I. Argatov and Prof. S. Mikhailov for their useful discussions and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mishuris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peck, D., Wrobel, M., Mishuris, G. et al. Threshold fracture energy in solid particle erosion: improved estimate for a rigid indenter impacting an elastic medium. Meccanica 50, 2995–3011 (2015). https://doi.org/10.1007/s11012-015-0173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0173-5

Keywords

Navigation