Advertisement

Meccanica

, Volume 50, Issue 7, pp 1761–1774 | Cite as

On the time decay of solutions in micropolar viscoelasticity

  • M. Carme Leseduarte
  • Antonio Magaña
  • Ramón Quintanilla
Article

Abstract

This paper deals with isotropic micropolar viscoelastic materials. It can be said that that kind of materials have two internal structures: the macrostructure, where the elasticity effects are noticed, and the microstructure, where the polarity of the material points allows them to rotate. We introduce, step by step, dissipation mechanisms in both structures, obtain the corresponding system of equations and determine the behavior of its solutions with respect the time.

Keywords

Micropolar viscoelasticity Polynomial decay Exponential decay Semigroup of contractions 

Notes

Acknowledgments

The investigation reported in this paper is supported by the project “Análisis Matemático de las Ecuaciones en Derivadas Parciales de la Termomecánica” (MTM2013-42004-P) of the Spanish Ministry of Economy and Competitiveness.

References

  1. 1.
    Alves MS, Muñoz Rivera JE (2009) Exponential decay in a thermoelastic mixture of solids. Int J Solids Struct 46(7–8):1659–1666MATHCrossRefGoogle Scholar
  2. 2.
    Alves MS, Muñoz Rivera JE (2009) Exponential stability in thermoviscoelastic mixtures of solids. Int J Solids Struct 46(24):4151–4162MATHCrossRefGoogle Scholar
  3. 3.
    Alves MS, Muñoz Rivera JE (2009) Analyticity of semigroups associates with thermoviscoelastic mixtures of solid. J Thermal Stress 32:986–1004CrossRefGoogle Scholar
  4. 4.
    Casas PS, Quintanilla R (2005) Exponential stability in thermoelasticity with microtemperatures. Int J Eng Sci 43:33–47MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Casas PS, Quintanilla R (2005) Exponential decay in one-dimensional porous-themoelasticity. Mech Res Commun 32:652–658MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Elangovan S, Altan BS, Odegard GM (2008) An elastic micropolar mixture theory for predicting elastic properties of cellular materials. Mech Mater 40(7):602–615CrossRefGoogle Scholar
  7. 7.
    Eringen AC (1967) Linear theory of micropolar viscoelasticity. Int J Eng Sci 5(2):191–204MATHCrossRefGoogle Scholar
  8. 8.
    Erigen AC (1999) Microcontinuum field theories. I: foundations and solids. Springer, New YorkCrossRefGoogle Scholar
  9. 9.
    Fatemi J, Van Keulen F, Onck PR (2002) Generalized continuum theories: application to stress analysis in bone. Meccanica 37:385–396MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Fernández-Sare H, Muñoz Rivera JE, Quintanilla R (2010) Decay of solutions in nonsimple thermoelastic bars. Int J Eng Sci 48(11):1233–1241MATHCrossRefGoogle Scholar
  11. 11.
    Glowinski P, Lada A (2009) Stabilization of elasticity–viscoporosity system by linear boundary feedback. Math Methods Appl Sci 32:702–722MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Han ZJ, Xu GQ (2012) Exponential decay in non-uniform porous-thermo-elasticity model of Lord–Shulman type. Discrete Contin Dyn Syst B 17:57–77MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Ieşan D (2004) Thermoelastic models of continua. Kluwer Academic Publishers, DordrechtMATHGoogle Scholar
  14. 14.
    Kordolemis A, Giannakopoulos AE (2014) Micropolar 2D elastic cables with applications to smart cables and textiles. J Eng Mech 140(10):04014079CrossRefGoogle Scholar
  15. 15.
    Lazzari B, Nibbi R (2009) On the influence of a dissipative boundary on the energy decay for a porous elastic solid. Mech Res Commun 36:581–586MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Leseduarte MC, Magaña A, Quintanilla R (2010) On the time decay of solutions in porous-thermo-elasticity of type II. Discrete Contin Dyn Syst B 13:375–391MATHCrossRefGoogle Scholar
  17. 17.
    Liu Z, Zheng S (1999) Semigroups associated with dissipative systems. Chapman and Hall/CRC, Boca RatonMATHGoogle Scholar
  18. 18.
    Magaña A, Quintanilla R (2006) On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity. Asymptot Anal 49:173–187MATHGoogle Scholar
  19. 19.
    Magaña A, Quintanilla R (2006) On the time decay of solutions in one-dimensional theories of porous materials. Int J Solids Struct 43:3414–3427MATHCrossRefGoogle Scholar
  20. 20.
    Magaña A, Quintanilla R (2007) On the time decay of solutions in porous elasticity with quasistatic microvoids. J Math Anal Appl 331:617–630MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Magaña A, Quintanilla R (2014) On the uniqueness and analyticity of solutions in micropolar thermoviscoelasticity. J Math Anal Appl 412:109–120MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Messaoudi SA, Fareh A (2011) General decay for a porous thermoelastic system with memory: the case of equal speeds. Nonlinear Anal 74:6895–6906MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Muñoz Rivera JE, Quintanilla R (2008) On the time polynomial decay in elastic solids with voids. J Math Anal Appl 338:1296–1309MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Nicasise S, Valein J (2012) Stabilization of non-homogeneous elastic materials with voids. J Math Anal Appl 387:1061–1087MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nikogosyan GS, Sargsyan SH (2006) Thin shells on the basis of asymmetric theory of elasticity. In: Pietraszkiewicz W, Szymczak C (eds) Shell structures: theory and applications. Taylor & Francis Group, London, pp 153–156Google Scholar
  26. 26.
    Pamplona PX, Muñoz Rivera JE, Quintanilla R (2009) Stabilization in elastic solids with voids. J Math Anal Appl 350:37–49MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Pamplona PX, Muñoz Rivera JE, Quintanilla R (2011) On the decay of solutions for porous-elastic systems with history. J Math Anal Appl 379:251–266CrossRefGoogle Scholar
  28. 28.
    Pamplona PX, Muñoz Rivera JE (2011) On uniqueness and analyticity in thermoviscoelastic solids with voids. J Appl Anal Comput 1:682–705Google Scholar
  29. 29.
    Pata V, Quintanilla R (2010) On the decay of solutions in nonsimple elastic solids with memory. J Math Anal Appl 363:19–28MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Quintanilla R (2003) Slow decay for one-dimensional porous dissipation elasticity. Appl Math Lett 16:487–491MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Quintanilla R (2005) Existence and exponential decay in the linear theory of viscoelastic mixtures. Eur J Mech A Solids 24(2):311–324MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Quintanilla R (2005) Exponential decay in mixtures with localized dissipative term. Appl Math Lett 18(12):1381–1388MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Soufyane A (2008) Energy decay for porous-thermo-elasticity systems of memory type. Appl Anal 87:451–464MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. Carme Leseduarte
    • 1
  • Antonio Magaña
    • 1
  • Ramón Quintanilla
    • 1
  1. 1.Dept. Matemàtica Aplicada 2UPCTerrassaSpain

Personalised recommendations