Skip to main content
Log in

On the time decay of solutions in micropolar viscoelasticity

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper deals with isotropic micropolar viscoelastic materials. It can be said that that kind of materials have two internal structures: the macrostructure, where the elasticity effects are noticed, and the microstructure, where the polarity of the material points allows them to rotate. We introduce, step by step, dissipation mechanisms in both structures, obtain the corresponding system of equations and determine the behavior of its solutions with respect the time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Alves MS, Muñoz Rivera JE (2009) Exponential decay in a thermoelastic mixture of solids. Int J Solids Struct 46(7–8):1659–1666

    Article  MATH  Google Scholar 

  2. Alves MS, Muñoz Rivera JE (2009) Exponential stability in thermoviscoelastic mixtures of solids. Int J Solids Struct 46(24):4151–4162

    Article  MATH  Google Scholar 

  3. Alves MS, Muñoz Rivera JE (2009) Analyticity of semigroups associates with thermoviscoelastic mixtures of solid. J Thermal Stress 32:986–1004

    Article  Google Scholar 

  4. Casas PS, Quintanilla R (2005) Exponential stability in thermoelasticity with microtemperatures. Int J Eng Sci 43:33–47

    Article  MATH  MathSciNet  Google Scholar 

  5. Casas PS, Quintanilla R (2005) Exponential decay in one-dimensional porous-themoelasticity. Mech Res Commun 32:652–658

    Article  MATH  MathSciNet  Google Scholar 

  6. Elangovan S, Altan BS, Odegard GM (2008) An elastic micropolar mixture theory for predicting elastic properties of cellular materials. Mech Mater 40(7):602–615

    Article  Google Scholar 

  7. Eringen AC (1967) Linear theory of micropolar viscoelasticity. Int J Eng Sci 5(2):191–204

    Article  MATH  Google Scholar 

  8. Erigen AC (1999) Microcontinuum field theories. I: foundations and solids. Springer, New York

    Book  Google Scholar 

  9. Fatemi J, Van Keulen F, Onck PR (2002) Generalized continuum theories: application to stress analysis in bone. Meccanica 37:385–396

    Article  MATH  MathSciNet  Google Scholar 

  10. Fernández-Sare H, Muñoz Rivera JE, Quintanilla R (2010) Decay of solutions in nonsimple thermoelastic bars. Int J Eng Sci 48(11):1233–1241

    Article  MATH  Google Scholar 

  11. Glowinski P, Lada A (2009) Stabilization of elasticity–viscoporosity system by linear boundary feedback. Math Methods Appl Sci 32:702–722

    Article  MATH  MathSciNet  Google Scholar 

  12. Han ZJ, Xu GQ (2012) Exponential decay in non-uniform porous-thermo-elasticity model of Lord–Shulman type. Discrete Contin Dyn Syst B 17:57–77

    Article  MATH  MathSciNet  Google Scholar 

  13. Ieşan D (2004) Thermoelastic models of continua. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  14. Kordolemis A, Giannakopoulos AE (2014) Micropolar 2D elastic cables with applications to smart cables and textiles. J Eng Mech 140(10):04014079

    Article  Google Scholar 

  15. Lazzari B, Nibbi R (2009) On the influence of a dissipative boundary on the energy decay for a porous elastic solid. Mech Res Commun 36:581–586

    Article  MATH  MathSciNet  Google Scholar 

  16. Leseduarte MC, Magaña A, Quintanilla R (2010) On the time decay of solutions in porous-thermo-elasticity of type II. Discrete Contin Dyn Syst B 13:375–391

    Article  MATH  Google Scholar 

  17. Liu Z, Zheng S (1999) Semigroups associated with dissipative systems. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  18. Magaña A, Quintanilla R (2006) On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity. Asymptot Anal 49:173–187

    MATH  Google Scholar 

  19. Magaña A, Quintanilla R (2006) On the time decay of solutions in one-dimensional theories of porous materials. Int J Solids Struct 43:3414–3427

    Article  MATH  Google Scholar 

  20. Magaña A, Quintanilla R (2007) On the time decay of solutions in porous elasticity with quasistatic microvoids. J Math Anal Appl 331:617–630

    Article  MATH  MathSciNet  Google Scholar 

  21. Magaña A, Quintanilla R (2014) On the uniqueness and analyticity of solutions in micropolar thermoviscoelasticity. J Math Anal Appl 412:109–120

    Article  MATH  MathSciNet  Google Scholar 

  22. Messaoudi SA, Fareh A (2011) General decay for a porous thermoelastic system with memory: the case of equal speeds. Nonlinear Anal 74:6895–6906

    Article  MATH  MathSciNet  Google Scholar 

  23. Muñoz Rivera JE, Quintanilla R (2008) On the time polynomial decay in elastic solids with voids. J Math Anal Appl 338:1296–1309

    Article  MATH  MathSciNet  Google Scholar 

  24. Nicasise S, Valein J (2012) Stabilization of non-homogeneous elastic materials with voids. J Math Anal Appl 387:1061–1087

    Article  MathSciNet  Google Scholar 

  25. Nikogosyan GS, Sargsyan SH (2006) Thin shells on the basis of asymmetric theory of elasticity. In: Pietraszkiewicz W, Szymczak C (eds) Shell structures: theory and applications. Taylor & Francis Group, London, pp 153–156

  26. Pamplona PX, Muñoz Rivera JE, Quintanilla R (2009) Stabilization in elastic solids with voids. J Math Anal Appl 350:37–49

    Article  MATH  MathSciNet  Google Scholar 

  27. Pamplona PX, Muñoz Rivera JE, Quintanilla R (2011) On the decay of solutions for porous-elastic systems with history. J Math Anal Appl 379:251–266

    Article  Google Scholar 

  28. Pamplona PX, Muñoz Rivera JE (2011) On uniqueness and analyticity in thermoviscoelastic solids with voids. J Appl Anal Comput 1:682–705

    Google Scholar 

  29. Pata V, Quintanilla R (2010) On the decay of solutions in nonsimple elastic solids with memory. J Math Anal Appl 363:19–28

    Article  MATH  MathSciNet  Google Scholar 

  30. Quintanilla R (2003) Slow decay for one-dimensional porous dissipation elasticity. Appl Math Lett 16:487–491

    Article  MATH  MathSciNet  Google Scholar 

  31. Quintanilla R (2005) Existence and exponential decay in the linear theory of viscoelastic mixtures. Eur J Mech A Solids 24(2):311–324

    Article  MATH  MathSciNet  Google Scholar 

  32. Quintanilla R (2005) Exponential decay in mixtures with localized dissipative term. Appl Math Lett 18(12):1381–1388

    Article  MATH  MathSciNet  Google Scholar 

  33. Soufyane A (2008) Energy decay for porous-thermo-elasticity systems of memory type. Appl Anal 87:451–464

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The investigation reported in this paper is supported by the project “Análisis Matemático de las Ecuaciones en Derivadas Parciales de la Termomecánica” (MTM2013-42004-P) of the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Carme Leseduarte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leseduarte, M.C., Magaña, A. & Quintanilla, R. On the time decay of solutions in micropolar viscoelasticity. Meccanica 50, 1761–1774 (2015). https://doi.org/10.1007/s11012-015-0117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0117-0

Keywords

Navigation