Skip to main content
Log in

Size-dependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, a size-dependent first-order shear deformable shell model is developed based upon the modified strain gradient theory (MSGT) for the axial buckling analysis of functionally graded (FG) circular cylindrical microshells. It is assumed that the material properties of FG materials, which obey a simple power-law distribution, vary through the thickness direction. The principle of virtual work is utilized to formulate the governing equations and corresponding boundary conditions. Numerical results are presented for the axial buckling of FG circular cylindrical microshells subject to simply-supported end conditions and the effects of material length scale parameter, material property gradient index, length-to-radius ratio and circumferential mode number on the size-dependent critical buckling load are extensively studied. For comparison purpose, the critical buckling loads predicted by modified couple stress theory (MCST) and classical theory (CT) are also presented. Results show that the size effect plays an important role for lower values of dimensionless length scale parameter. Moreover, it is observed that the critical buckling loads obtained based on MSGT are greater than those obtained based on MCST and CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miyamoto Y, Kaysser WA, Rabin BH (1999) Functionally graded materials: design, processing and applications. Kluwer Academic Press, Dordrecht

    Book  Google Scholar 

  2. Loy CT, Lam KY, Reddy JN (1999) Vibration of functionally graded cylindrical shells. Int J Mech Sci 41:309–324

    Article  MATH  Google Scholar 

  3. Pradhan SC, Loy CT, Lam KY, Reddy JN (2000) Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Appl Acoust 61:111–129

    Article  Google Scholar 

  4. Shahsiah R, Eslami MR (2003) Thermal buckling of functionally graded cylindrical shell. J Therm Stress 26:277–294

    Article  Google Scholar 

  5. Du Ch, Li Y (2013) Nonlinear resonance behavior of functionally graded cylindrical shells in thermal environments. Compos Struct 102:164–174

    Article  Google Scholar 

  6. Khazaeinejad P, Najafizadeh MM (2010) Mechanical buckling of cylindrical shells with varying material properties. Proc Inst Mech Eng C J Mech Eng Sci 224:1551–1557

    Article  Google Scholar 

  7. Fu YQ, Du HJ, Zhang S (2003) Functionally graded TiN/TiNi shape memory alloy films. Mater Lett 57:2995–2999

    Article  Google Scholar 

  8. Fu YQ, Du HJ, Huang WM, Zhang S, Hu M (2004) TiNi-based thin films in MEMS applications: a review. Sens Actuators A 112:395–408

    Article  Google Scholar 

  9. Witvrouw A, Mehta A (2005) The use of functionally graded poly-SiGe layers for MEMS applications. Mater Sci Forum 492:255–260

    Google Scholar 

  10. Lee Z, Ophus C, Fischer LM, Nelson-Fitzpatrick N, Westra KL, Evoy S et al (2006) Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology 17:3063–3070

    Article  Google Scholar 

  11. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiments. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  12. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  ADS  MATH  Google Scholar 

  13. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MATH  MathSciNet  Google Scholar 

  14. Eringen CA (1966) Linear theory of micropolar elasticity. J Math Mech 15:909–923

    MATH  MathSciNet  Google Scholar 

  15. Toupin RA (1962) Elastic materials with couple stresses. Arch Ration Mech Anal 11:385–414

    Article  MATH  MathSciNet  Google Scholar 

  16. Koiter WT (1964) Couple stresses in the theory of elasticity I and II. Proc K Ned Akad Wet B 67:17–44

    MATH  Google Scholar 

  17. Yang F, Chong AC, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  18. Park SK, Gao XL (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J Micromech Microeng 16:2355–2359

    Article  Google Scholar 

  19. Ma HM, Gao XL, Reddy JN (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56:3379–3391

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Asghari M, Rahaeifard M, Kahrobaiyan MH, Ahmadian MT (2011) The modified couple stress functionally graded Timoshenko beam formulation. Mater Des 32:1435–1443

    Article  Google Scholar 

  21. Asghari M, Kahrobaiyan MH, Ahmadian MT (2010) A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int J Eng Sci 48:1749–1761

    Article  MATH  MathSciNet  Google Scholar 

  22. Kong SL, Zhou SJ, Nie ZF (2008) The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int J Eng Sci 46:427–437

    Article  MATH  Google Scholar 

  23. Reddy JN (2011) Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids 59:2382–2399

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Sahmani S, Ansari R, Gholami R, Darvizeh A (2013) Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory. Compos B 51:44–53

    Article  Google Scholar 

  25. Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:296–358

    Google Scholar 

  26. Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271

    Article  ADS  MATH  Google Scholar 

  27. Altan BS, Aifantis EC (1992) On the structure of the mode III crack-tip in gradient elasticity. Scr Metall Mater 26:319–324

    Article  Google Scholar 

  28. Lazopoulos KA (2004) On the gradient strain elasticity theory of plates. Eur J Mech A Solids 23:843–852

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang B, Zhao J, Zhou S (2010) A microscale Timoshenko beam model based on strain gradient elasticity theory. Eur J Mech A Solids 29:591–599

    Article  Google Scholar 

  30. Akgoz B, Civalek O (2011) Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int J Eng Sci 49:1268–1280

    Article  MathSciNet  Google Scholar 

  31. Papargyri-Beskou S, Giannakopoulosb AE, Beskos DE (2010) Variational analysis of gradient elastic flexural plates under static loading. Int J Solids Struct 47(2010):2755–2766

    Article  MATH  Google Scholar 

  32. Wang B, Zhou Sh, Zhao J, Chen X (2011) A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur J Mech A Solids 30:517–524

    Article  Google Scholar 

  33. Papargyri-Beskoua S, Beskos DE (2009) Stability analysis of gradient elastic circular cylindrical thin shells. Int J Eng Sci 47:1379–1385

    Article  Google Scholar 

  34. Ansari R, Gholami R, Sahmani S (2011) Free vibration of size-dependent functionally graded microbeams based on a strain gradient theory. Compos Struct 94:221–228

    Article  Google Scholar 

  35. Ansari R, Gholami R, Sahmani S (2012) Study of small scale effects on the nonlinear vibration response of functionally graded Timoshenko microbeams based on the strain gradient theory. J Comput Nonlinear Dyn ASME J 7:031010

    Article  Google Scholar 

  36. Donnell HL (1933) The problem of elastic stability, Transactions of the American Society of Mechanical Engineers, Aeronautical Division

  37. Ganapathi M (2007) Dynamic stability characteristics of functionally graded materials shallow spherical shells. Compos Struct 79:338–343

    Article  Google Scholar 

  38. Ke LL, Wang YS (2011) Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos Struct 93:342–350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Appendices

Appendix 1

The force resultants and moment resultants on the basis of Eq. (16) in terms of displacements are defined as

$$ \begin{aligned} N_{xx} & = A_{11} \frac{\partial u}{\partial x} + B_{11} \frac{{\partial \psi_{x} }}{\partial x} + A_{12} \left( {\frac{\partial v}{\partial y} + \frac{w}{R}} \right) + B_{12} \frac{{\partial \psi_{y} }}{\partial y},\quad Q_{x} = k_{s} A_{55} \left( {\psi_{x} + {\mkern 1mu} \frac{\partial w}{\partial x}} \right), \\ N_{yy} & = A_{11} \left( {\frac{\partial v}{\partial y} + \frac{w}{R}} \right) + B_{11} \frac{{\partial \psi_{y} }}{\partial y} + A_{12} \frac{\partial u}{\partial x} + B_{12} \frac{{\partial \psi_{x} }}{\partial x},\quad Q_{y} = k_{s} A_{55} \left( {\frac{\partial w}{\partial y} + \psi_{y} - \frac{v}{R}} \right), \\ N_{xy} & = A_{55} \left( {\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}} \right) + B_{55} \left( {\frac{{\partial \psi_{x} }}{\partial y} + \frac{{\partial \psi_{y} }}{\partial x}} \right), \\ M_{xx} & = B_{11} \frac{\partial u}{\partial x} + D_{11} \frac{{\partial \psi_{x} }}{\partial x} + B_{12} \left( {\frac{\partial v}{\partial y} + \frac{w}{R}} \right) + D_{12} \frac{{\partial \psi_{y} }}{\partial y}, \\ M_{yy} & = B_{11} \left( {\frac{\partial v}{\partial y} + \frac{w}{R}} \right) + D_{11} \frac{{\partial \psi_{y} }}{\partial y} + B_{12} \frac{\partial u}{\partial x} + D_{12} \frac{{\partial \psi_{x} }}{\partial x}, \\ M_{xy} & = B_{55} \left( {\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}} \right) + D_{55} \left( {\frac{{\partial \psi_{x} }}{\partial y} + \frac{{\partial \psi_{y} }}{\partial x}} \right). \\ \end{aligned} $$
(27)
$$ \begin{aligned} P_{x} & = 2A_{55} l_{0}^{2} \left( {\frac{{\partial^{2} u}}{{\partial x^{2} }} + \frac{{\partial^{2} v}}{\partial x\partial y} + \frac{1}{R}\frac{\partial w}{\partial x}} \right) + 2B_{55} l_{0}^{2} \left( {\frac{{\partial^{2} \psi_{x} }}{{\partial x^{2} }} + \frac{{\partial^{2} \psi_{y} }}{\partial x\,\partial y}} \right), \\ P_{y} & = 2A_{55} l_{0}^{2} \left( {\frac{{\partial^{2} u}}{\partial x\partial y} + \frac{{\partial^{2} v}}{{\partial y^{2} }} + \frac{1}{R}\frac{\partial w}{\partial y}} \right) + 2B_{55} l_{0}^{2} \left( {\frac{{\partial^{2} \psi_{x} }}{\partial x\partial y} + \frac{{\partial^{2} \psi_{y} }}{{\partial y^{2} }}} \right), \\ P_{z} & = 2A_{55} l_{0}^{2} \left( { - \frac{1}{R}\frac{\partial v}{\partial y} - \frac{w}{{R^{2} }} + \frac{{\partial \psi_{x} }}{\partial x} + \frac{{\partial \psi_{y} }}{\partial y}} \right), \\ M_{x}^{p} & = 2B_{55} l_{0}^{2} \left( {\frac{{\partial^{2} u}}{{\partial x^{2} }} + \frac{{\partial^{2} v}}{\partial x\partial y} + \frac{1}{R}\frac{\partial w}{\partial x}} \right) + 2D_{55} l_{0}^{2} \left( {\frac{{\partial^{2} \psi_{x} }}{{\partial x^{2} }} + \frac{{\partial^{2} \psi_{y} }}{\partial x\partial y}} \right), \\ M_{y}^{p} & = 2B_{55} l_{0}^{2} \left( {\frac{{\partial^{2} u}}{\partial x\partial y} + \frac{{\partial^{2} v}}{{\partial y^{2} }} + \frac{1}{R}\frac{\partial w}{\partial y}} \right) + 2D_{55} l_{0}^{2} \left( {\frac{{\partial^{2} \psi_{x} }}{\partial x\partial y} + \frac{{\partial^{2} \psi_{y} }}{{\partial y^{2} }}} \right). \\ \end{aligned} $$
(28)
$$ \begin{aligned} Y_{xx} & = A_{55} l_{2}^{2} \left( {\frac{{\partial \psi_{y} }}{\partial x} + \frac{1}{R}\frac{\partial v}{\partial x} - \frac{{\partial^{2} w}}{\partial x\partial y}} \right),\quad Y_{yy} = A_{55} l_{2}^{2} \left[ {\frac{1}{R}\left( {\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}} \right) + \frac{{\partial^{2} w}}{\partial x\partial y} - \frac{{\partial \psi_{x} }}{\partial y}} \right], \\ Y_{zz} & = A_{55} l_{2}^{2} \left( {\frac{{\partial \psi_{x} }}{\partial y} - \frac{{\partial \psi_{y} }}{\partial x} - \frac{1}{R}\frac{\partial u}{\partial y}} \right),\quad Y_{xy} = \frac{{A_{55} l_{2}^{2} }}{2}{\mkern 1mu} \left( {\frac{1}{R}{\mkern 1mu} \frac{\partial v}{\partial y} + \frac{{\partial^{2} w}}{{\partial x^{2} }} - \frac{{\partial^{2} w}}{{\partial y^{2} }} - \frac{{\partial \psi_{x} }}{\partial x} + \frac{{\partial \psi_{y} }}{\partial y}} \right), \\ Y_{xz} & = \frac{{A_{55} l_{2}^{2} }}{2}\left( {\frac{{\partial^{2} u}}{\partial x\partial y} - \frac{{\partial^{2} v}}{{\partial x^{2} }} - \frac{v}{{R^{2} }} + \frac{1}{R}\frac{\partial w}{\partial y} + \frac{{\psi_{y} }}{R}} \right) + \frac{{B_{55} l_{2}^{2} }}{2}\left( {\frac{{\partial^{2} \psi_{x} }}{\partial x\partial y} - \frac{{\partial^{2} \psi_{y} }}{{\partial x^{2} }}} \right), \\ Y_{yz} & = \frac{{A_{55} l_{2}^{2} }}{2}\left( {{\mkern 1mu} \frac{{\partial^{2} u}}{{\partial y^{2} }} - \frac{{\partial^{2} v}}{\partial x\partial y} - \frac{1}{R}\frac{\partial w}{\partial x} + \frac{{\psi_{x} }}{R}} \right) + \frac{{B_{55} l_{2}^{2} }}{2}\left( {\frac{{\partial^{2} \psi_{x} }}{{\partial y^{2} }} - \frac{{\partial^{2} \psi_{y} }}{\partial x\partial y}} \right), \\ H_{xz} & = \frac{{B_{55} l_{2}^{2} }}{2}\left( {\frac{{\partial^{2} u}}{\partial x\partial y} - \frac{{\partial^{2} v}}{{\partial x^{2} }} - \frac{v}{{R^{2} }} + \frac{1}{R}\frac{\partial w}{\partial y} + \frac{{\psi_{y} }}{R}} \right) + \frac{{D_{55} l_{2}^{2} }}{2}\left( {\frac{{\partial^{2} \psi_{x} }}{\partial x\partial y} - \frac{{\partial^{2} \psi_{y} }}{{\partial x^{2} }}} \right), \\ H_{yz} & = \frac{{B_{55} l_{2}^{2} }}{2}\left( {{\mkern 1mu} \frac{{\partial^{2} u}}{{\partial y^{2} }} - {\mkern 1mu} \frac{{\partial^{2} v}}{\partial x\partial y} - \frac{1}{R}\frac{\partial w}{\partial x} + \frac{{\psi_{x} }}{R}} \right) + \frac{{D_{55} l_{2}^{2} }}{2}\left( {\frac{{\partial^{2} \psi_{x} }}{{\partial y^{2} }} - \frac{{\partial^{2} \psi_{y} }}{\partial x\partial y}} \right). \\ \end{aligned} $$
(29)
$$ \begin{aligned} T_{xxx} & = \frac{{2A_{55} l_{1}^{2} }}{5}\left( {2\frac{{\partial^{2} u}}{{\partial x^{2} }} - \frac{{\partial^{2} u}}{{\partial y^{2} }} - 2\frac{{\partial^{2} v}}{\partial x\partial y} - \frac{1}{R}\frac{\partial w}{\partial x}} \right) - \frac{{2B_{55} l_{1}^{2} }}{5}\left( {\frac{{\partial^{2} \psi_{x} }}{{\partial y^{2} }} + 2\frac{{\partial^{2} \psi_{y} }}{\partial x\partial y} - 2\frac{{\partial^{2} \psi_{x} }}{{\partial x^{2} }}} \right), \\ T_{yyy} & = - \frac{{2A_{55} l_{1}^{2} }}{5}\left( {2\frac{{\partial^{2} u}}{\partial x\partial y} + \frac{{\partial^{2} v}}{{\partial x^{2} }} - 2\frac{{\partial^{2} v}}{{\partial y^{2} }} - \frac{3}{R}\frac{\partial w}{\partial y} + \frac{v}{{R^{2} }} - {\mkern 1mu} \frac{{\psi_{y} }}{R}} \right) - \frac{{2B_{55} l_{1}^{2} }}{5}\left( {2\frac{{\partial^{2} \psi_{x} }}{\partial x\partial y} + \frac{{\partial^{2} \psi_{y} }}{{\partial x^{2} }} - 2\frac{{\partial^{2} \psi_{y} }}{{\partial y^{2} }}} \right), \\ T_{xxy} & = \frac{{2A_{55} l_{1}^{2} }}{15}\left( {8\frac{{\partial^{2} u}}{\partial x\partial y} + 4\frac{{\partial^{2} v}}{{\partial x^{2} }} - 3\frac{{\partial^{2} v}}{{\partial y^{2} }} - \frac{2}{R}\frac{\partial w}{\partial y} - \frac{v}{{R^{2} }} + \frac{{\psi_{y} }}{R}} \right) + \frac{{2B_{55} l_{1}^{2} }}{15}\left( {4\frac{{\partial^{2} \psi_{y} }}{{\partial x^{2} }} + 8\frac{{\partial^{2} \psi_{x} }}{\partial x\partial y} - 3\frac{{\partial^{2} \psi_{y} }}{{\partial y^{2} }}} \right), \\ T_{yyx} & = \frac{{2A_{55} l_{1}^{2} }}{15}\left( { - 3\frac{{\partial^{2} u}}{{\partial x^{2} }} + 4\frac{{\partial^{2} u}}{{\partial y^{2} }} + 8\frac{{\partial^{2} v}}{\partial x\partial y} + \frac{4}{R}\frac{\partial w}{\partial x}} \right) + \frac{{2B_{55} l_{1}^{2} }}{15}\left( {8\frac{{\partial^{2} \psi_{y} }}{\partial x\partial y} - 3\frac{{\partial^{2} \psi_{x} }}{{\partial x^{2} }} + 4\frac{{\partial^{2} \psi_{x} }}{{\partial y^{2} }}} \right), \\ T_{zzy} & = \frac{{2A_{55} l_{1}^{2} }}{15}\left( { - 2\frac{{\partial^{2} u}}{\partial x\partial y} - {\mkern 1mu} \frac{{\partial^{2} v}}{{\partial x^{2} }} - 3\frac{{\partial^{2} v}}{{\partial y^{2} }} - \frac{7}{R}\frac{\partial w}{\partial y} + 4\frac{v}{{R^{2} }} - 4\frac{{\psi_{y} }}{R}} \right) - \frac{{2B_{55} l_{1}^{2} }}{15}\left( {\frac{{\partial^{2} \psi_{y} }}{{\partial x^{2} }} + 2\frac{{\partial^{2} \psi_{x} }}{\partial x\partial y} + 3\frac{{\partial^{2} \psi_{y} }}{{\partial y^{2} }}} \right), \\ T_{xxz} & = \frac{{2A_{55} l_{1}^{2} }}{15}\left( {\frac{2}{R}\frac{\partial v}{\partial y} + 4\frac{{\partial^{2} w}}{{\partial x^{2} }} - \frac{{\partial^{2} w}}{{\partial y^{2} }} + \frac{w}{{R^{2} }} + 8\frac{{\partial \psi_{x} }}{\partial x} - 2\frac{{\partial \psi_{y} }}{\partial y}} \right), \\ T_{yyz} & = \frac{{2A_{55} l_{1}^{2} }}{15}{\mkern 1mu} \left( {4\frac{{\partial^{2} w}}{{\partial y^{2} }} - \frac{{\partial^{2} w}}{{\partial x^{2} }} - 4\frac{w}{{R^{2} }} - \frac{8}{R}\frac{\partial v}{\partial y} + 8\frac{{\partial \psi_{y} }}{\partial y} - 2\frac{{\partial \psi_{x} }}{\partial x}} \right), \\ T_{xyz} & = \frac{{2A_{55} l_{1}^{2} }}{3}\left( { - \frac{1}{2R}\frac{\partial v}{\partial x} - \frac{1}{2R}\frac{\partial u}{\partial y} + \frac{{\partial \psi_{y} }}{\partial x} + \frac{{\partial^{2} w}}{\partial x\partial y} + \frac{{\partial \psi_{x} }}{\partial y}} \right), \\ \end{aligned} $$
$$ \begin{aligned} M_{xxx} & = \frac{{2B_{55} l_{1}^{2} }}{5}\left( {2\frac{{\partial^{2} u}}{{\partial x^{2} }} - \frac{{\partial^{2} u}}{{\partial y^{2} }} - 2\frac{{\partial^{2} v}}{\partial x\partial y} - \frac{1}{R}\frac{\partial w}{\partial x}} \right) - \frac{{2D_{55} l_{1}^{2} }}{5}\left( {\frac{{\partial^{2} \psi_{x} }}{{\partial y^{2} }} + 2\frac{{\partial^{2} \psi_{y} }}{\partial x\partial y} - 2\frac{{\partial^{2} \psi_{x} }}{{\partial x^{2} }}} \right), \\ M_{yyy} & = - \frac{{2B_{55} l_{1}^{2} }}{5}\left( {2\frac{{\partial^{2} u}}{\partial x\partial y} + \frac{{\partial^{2} v}}{{\partial x^{2} }} - 2\frac{{\partial^{2} v}}{{\partial y^{2} }} - \frac{3}{R}\frac{\partial w}{\partial y} + \frac{v}{{R^{2} }} - \frac{{\psi_{y} }}{R}} \right) - \frac{{2D_{55} l_{1}^{2} }}{5}\left( {2\frac{{\partial^{2} \psi_{x} }}{\partial x\partial y} + \frac{{\partial^{2} \psi_{y} }}{{\partial x^{2} }} - 2\frac{{\partial^{2} \psi_{y} }}{{\partial y^{2} }}} \right), \\ M_{xxy} & = \frac{{2B_{55} l_{1}^{2} }}{15}\left( {8{\mkern 1mu} \frac{{\partial^{2} u}}{\partial x\partial y} + 4{\mkern 1mu} \frac{{\partial^{2} v}}{{\partial x^{2} }} - 3\frac{{\partial^{2} v}}{{\partial y^{2} }} - \frac{2}{R}\frac{\partial w}{\partial y} - {\mkern 1mu} \frac{v}{{R^{2} }} + {\mkern 1mu} \frac{{\psi_{y} }}{R}} \right) + \frac{{2D_{55} l_{1}^{2} }}{15}\left( {4\frac{{\partial^{2} \psi_{y} }}{{\partial x^{2} }} + 8\frac{{\partial^{2} \psi_{x} }}{\partial x\partial y} - 3\frac{{\partial^{2} \psi_{y} }}{{\partial y^{2} }}} \right), \\ M_{yyx} & = \frac{{2B_{55} l_{1}^{2} }}{15}\left( { - 3\frac{{\partial^{2} u}}{{\partial x^{2} }} + 4\frac{{\partial^{2} u}}{{\partial y^{2} }} + 8\frac{{\partial^{2} v}}{\partial x\partial y} + \frac{4}{R}\frac{\partial w}{\partial x}} \right) + \frac{{2D_{55} l_{1}^{2} }}{15}\left( {8\frac{{\partial^{2} \psi_{y} }}{\partial x\partial y} - 3\frac{{\partial^{2} \psi_{x} }}{{\partial x^{2} }} + 4\frac{{\partial^{2} \psi_{x} }}{{\partial y^{2} }}} \right). \\ \end{aligned} $$
(30)

Appendix 2

$$ \begin{aligned} C_{1} & = \left( {2l_{0}^{2} + \frac{4}{5}{\mkern 1mu} l_{1}^{2} } \right),C_{2} = \left( {\frac{8}{15}l_{1}^{2} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{3} = \left( {2l_{0}^{2} + \frac{4}{3}{\mkern 1mu} l_{1}^{2} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{4} = \left( {2l_{0}^{2} + \frac{4}{15}{\mkern 1mu} l_{1}^{2} - \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right), \\ C_{5} & = \left( {2l_{0}^{2} + \frac{2}{3}l_{1}^{2} - \frac{1}{2}l_{2}^{2} } \right),C_{6} = \left( {\frac{1}{3}l_{1}^{2} + l_{2}^{2} } \right),C_{7} = \left( {\frac{3}{5}{\mkern 1mu} l_{1}^{2} - \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{8} = \left( {2l_{0}^{2} - \frac{2}{5}l_{1}^{2} } \right), \\ C_{9} & = \left( {\frac{5}{4}{\mkern 1mu} l_{2}^{2} + \frac{2}{3}{\mkern 1mu} l_{1}^{2} } \right),C_{10} = \left( {\frac{14}{15}{\mkern 1mu} l_{1}^{2} - \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{11} = \left( {2{\mkern 1mu} l_{0}^{2} + \frac{44}{15}{\mkern 1mu} l_{1}^{2} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{12} = \left( {\frac{3}{5}{\mkern 1mu} l_{1}^{2} + \frac{1}{2}{\mkern 1mu} l_{2}^{2} } \right), \\ C_{13} & = \left( {2{\mkern 1mu} l_{1}^{2} + 2{\mkern 1mu} l_{0}^{2} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{14} = \left( {2{\mkern 1mu} l_{0}^{2} + \frac{6}{5}{\mkern 1mu} l_{1}^{2} + \frac{3}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{15} = \left( {2{\mkern 1mu} l_{0}^{2} + \frac{34}{15}{\mkern 1mu} l_{1}^{2} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right), \\ C_{16} & = \left( {\frac{{4{\mkern 1mu} }}{15}l_{1}^{2} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{17} = \left( {2{\mkern 1mu} l_{0}^{2} + \frac{2}{15}{\mkern 1mu} l_{1}^{2} - \frac{1}{2}{\mkern 1mu} l_{2}^{2} } \right),C_{18} = \left( {\frac{4}{5}{\mkern 1mu} l_{1}^{2} - \frac{3}{4}{\mkern 1mu} l_{2}^{2} } \right), \\ C_{19} & = \left( {2l_{0}^{2} + \frac{38}{15}{\mkern 1mu} l_{1}^{2} - \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{20} = \left( {2{\mkern 1mu} l_{0}^{2} + \frac{4}{15}{\mkern 1mu} l_{1}^{2} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{21} = \left( {2{\mkern 1mu} l_{0}^{2} + \frac{16}{5}{\mkern 1mu} l_{1}^{2} + \frac{1}{4}l_{2}^{2} } \right), \\ C_{22} & = \left( {2l_{0}^{2} + \frac{8}{15}{\mkern 1mu} l_{1}^{2} } \right),C_{23} = \left( {\frac{16}{15}l_{1}^{2} - \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{24} = \left( {2{\mkern 1mu} l_{0}^{2} - \frac{4}{15}{\mkern 1mu} l_{1}^{2} - \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{25} = \left( {2l_{0}^{2} + \frac{32}{15}{\mkern 1mu} l_{1}^{2} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} } \right), \\ C_{26} & = \left( {2{\mkern 1mu} l_{0}^{2} + \frac{4}{5}{\mkern 1mu} l_{1}^{2} - \frac{3}{4}{\mkern 1mu} l_{2}^{2} } \right),C_{27} = \left( {\frac{4}{3}{\mkern 1mu} l_{1}^{2} + l_{2}^{2} } \right),C_{28} = \left( {\frac{4}{15}{\mkern 1mu} l_{1}^{2} - \frac{1}{2}{\mkern 1mu} l_{2}^{2} } \right),C_{29} = \left( {2{\mkern 1mu} l_{0}^{2} + \frac{6}{5}l_{1}^{2} } \right). \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, R., Darvizeh, A., Ansari, R. et al. Size-dependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory. Meccanica 49, 1679–1695 (2014). https://doi.org/10.1007/s11012-014-9944-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-9944-7

Keywords

Navigation