, Volume 50, Issue 2, pp 461–478 | Cite as

Optimisation and analysis of the reinforcement effect of carbon nanotubes in a typical matrix system

  • Giorgos Gkikas
  • Alkiviadis S. Paipetis
Experimental Solid Mechanics


The scope of this work is the analysis of the reinforcement effect of carbon nanotubes in typical matrix systems, such as epoxy resins. As is well known, efficient dispersion is critical in achieving adequate reinforcement. However, dispersion processes are also well known to degrade the nano-phase. Degradation is manifested as reduction in the aspect ratio as the nanotubes de-agglomerate and break at the same time. For the purpose of this study, multi-wall carbon nanotubes (MWCNTs) with typical length of 1 μm and diameter of 10–15 nm were used for manufacturing MWCNTs/epoxy nano-composites. The inclusion content was 0.5 and 1 % w/w respectively, and dispersion was performed using a typical sonicator gun. The tensile and the fracture toughness properties of the specimens were initially assessed and subsequently optimized. The optimisation process resulted in spectacular improvement in toughness properties. Finally, the antagonistic mechanisms that govern the reinforcement efficient were analysed via the application of the Halpin–Tsai equations for the tensile properties and the distinct contributions of the mechanisms that dissipate energy and enhance toughness, such as the nanotube pull-out, the plastic void growth of the epoxy and the nanotube debonding energy. The de-agglomeration and the aspect ratio reduction were shown to adversely affect the nano-composite properties and create an optimization envelop, well predicted by the employed simple models.


Carbon nanotubes Epoxy Dispersion Nanocomposites Toughness Modeling 


  1. 1.
    Kinloch AJ et al (1983) Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies. Polymer 24(10):1341–1354CrossRefGoogle Scholar
  2. 2.
    Yee AF, Pearson RA (1986) Toughening mechanisms in elastomer-modified epoxies. J Mater Sci 21(7):2462–2474ADSCrossRefGoogle Scholar
  3. 3.
    Kinloch AJ (2003) Toughening epoxy adhesives to meet today’s challenges. MRS Bull 28(6):445–448CrossRefGoogle Scholar
  4. 4.
    Hourston DJ, Lane JM (1992) The toughening of epoxy resins with thermoplastics: 1. trifunctional epoxy resin–polyetherimide blends. Polymer 33(7):1379–1383CrossRefGoogle Scholar
  5. 5.
    Lee J, Yee AF (2000) Fracture of glass bead/epoxy composites: on micro-mechanical deformations. Polymer 41(23):8363–8373CrossRefGoogle Scholar
  6. 6.
    Hsieh TH et al (2010) The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer 51(26):6284–6294CrossRefGoogle Scholar
  7. 7.
    Dittanet P, Pearson RA (2012) Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer 53(9):1890–1905CrossRefGoogle Scholar
  8. 8.
    Minopoulou E et al (2003) Use of NIR for structural characterization of urea-formaldehyde resins. Int J Adhes Adhes 23(6):473–484CrossRefGoogle Scholar
  9. 9.
    Subramaniyan AK, Sun CT (2007) Toughening polymeric composites using nanoclay: crack tip scale effects on fracture toughness. Compos A 38(1):34–43CrossRefGoogle Scholar
  10. 10.
    Quaresimin M, Salviato M, Zappalorto M (2012) Fracture and interlaminar properties of clay-modified epoxies and their glass reinforced laminates. Eng Fract Mech 81:80–93CrossRefGoogle Scholar
  11. 11.
    Silani M et al (2012) On the experimental and numerical investigation of clay/epoxy nanocomposites. Compos Struct 94(11):3142–3148CrossRefGoogle Scholar
  12. 12.
    Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos A 34(8):689–694CrossRefGoogle Scholar
  13. 13.
    Gkikas G, Barkoula NM, Paipetis AS (2012) Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos B 43(6):2697–2705CrossRefGoogle Scholar
  14. 14.
    Shaffer M, Kinloch IA (2004) Prospects for nanotube and nanofibre composites. Compos Sci Technol 64(15):2281–2282CrossRefGoogle Scholar
  15. 15.
    Mirjalili V, Hubert P (2010) Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification. Compos Sci Technol 70(10):1537–1543CrossRefGoogle Scholar
  16. 16.
    Tang L-C et al (2013) Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles. Compos A 45:95–101CrossRefGoogle Scholar
  17. 17.
    Spitalsky Z et al (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401CrossRefGoogle Scholar
  18. 18.
    Bortz DR, Merino C, Martin-Gullon I (2011) Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system. Compos Sci Technol 71(1):31–38CrossRefGoogle Scholar
  19. 19.
    Patton RD et al (1999) Vapor grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices. Compos A 30(9):1081–1091CrossRefGoogle Scholar
  20. 20.
    Rafiee MA et al (2010) Fracture and fatigue in graphene nanocomposites. Small 6(2):179–183CrossRefGoogle Scholar
  21. 21.
    Young RJ et al (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72(12):1459–1476CrossRefGoogle Scholar
  22. 22.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58ADSCrossRefGoogle Scholar
  23. 23.
    Grammatikos SA, Gkikas G, Paipetis A (2011) Monitoring strain and damage in multi-phase composite materials using electrical resistance methods. Proc SPIE 7982:79820KGoogle Scholar
  24. 24.
    Ueda M, Todoroki A (2006) Asymmetrical dual charge EPCM for delamination monitoring of CFRP laminate. Key Eng Mater 321–323:1309–1315CrossRefGoogle Scholar
  25. 25.
    Gkikas G et al (2012) Enhanced bonded aircraft repair using nano-modified adhesives. Mater Des 41:394–402CrossRefGoogle Scholar
  26. 26.
    Bertolini Cestari C et al (2013) The reinforcement of ancient timber-joints with carbon nano-composites. Meccanica 48(8):1925–1935CrossRefGoogle Scholar
  27. 27.
    Barkoula NM et al (2009) Environmental degradation of carbon nanotube-modified composite laminates: a study of electrical resistivity. Mech Compos Mater 45(1):21–32CrossRefGoogle Scholar
  28. 28.
    Grammatikos SA et al (2012) Low-velocity impact damage identification using a novel current injection thermographic technique. Proceedings of SPIE—The International Society for Optical Engineering 8346Google Scholar
  29. 29.
    Karapappas P et al (2009) Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J Compos Mater 43(9):977–985CrossRefGoogle Scholar
  30. 30.
    Kostopoulos V et al (2010) Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Compos Sci Technol 70(4):553–563CrossRefGoogle Scholar
  31. 31.
    Kostopoulos V et al (2011) Interlaminar fracture toughness of carbon fibre-reinforced polymer laminates with nano- and micro-fillers. Strain 47(SUPPL. 1):e269–e282CrossRefGoogle Scholar
  32. 32.
    Vavouliotis A et al (2009) Multistage fatigue life monitoring on carbon fibre reinforced polymers enhanced with multiwall carbon nanotubes. Plast Rubber Compos 38(2–4):124–130CrossRefGoogle Scholar
  33. 33.
    Vavouliotis A, Paipetis A, Kostopoulos V (2011) On the fatigue life prediction of CFRP laminates using the electrical resistance change method. Compos Sci Technol 71(5):630–642CrossRefGoogle Scholar
  34. 34.
    Grammatikos SA et al (2014) Current injection phase thermography for low-velocity impact damage identification in composite laminates. Mater Des 55:429–441CrossRefGoogle Scholar
  35. 35.
    Grammatikos SA et al (2013) Real-time debonding monitoring of composite repaired materials via electrical, acoustic, and thermographic methods. J Mater Eng Perform 1–12Google Scholar
  36. 36.
    Paipetis AS, Kostopoulos V (2013) Carbon nanotubes for novel hybrid structural composites with enhanced damage tolerance and self-sensing/actuating abilities. Springer, Dordrecht, pp 1–20Google Scholar
  37. 37.
    Xie S et al (2000) Mechanical and physical properties on carbon nanotube. J Phys Chem Solids 61(7):1153–1158ADSCrossRefGoogle Scholar
  38. 38.
    Wong M et al (2003) Physical interactions at carbon nanotube–polymer interface. Polymer 44(25):7757–7764CrossRefGoogle Scholar
  39. 39.
    Boura O et al (2013) Carbon nanotube growth on high modulus carbon fibres: morphological and interfacial characterization. Surf Interface Anal 45(9):1372–1381CrossRefGoogle Scholar
  40. 40.
    Fidelus JD et al (2005) Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos A 36(11):1555–1561CrossRefGoogle Scholar
  41. 41.
    Chakraborty A et al (2011) Carbon nanotube (CNT)–epoxy nanocomposites: a systematic investigation of CNT dispersion. J Nanopart Res 13(12):6493–6506CrossRefGoogle Scholar
  42. 42.
    Rachmadini Y, Tan VBC, Tay TE (2010) Enhancement of mechanical properties of composites through incorporation of CNT in VARTM: a review. J Reinf Plast Compos 29(18):2782–2807CrossRefGoogle Scholar
  43. 43.
    Yeh M-K, Hsieh T-H, Tai N-H (2008) Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites. Mater Sci Eng A 483–484:289–292CrossRefGoogle Scholar
  44. 44.
    Seyhan AT, Tanoğlu M, Schulte K (2009) Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling. Mater Sci Eng A 523(1–2):85–92CrossRefGoogle Scholar
  45. 45.
    Lee JH, Rhee KY, Park SJ (2010) The tensile and thermal properties of modified CNT-reinforced basalt/epoxy composites. Mater Sci Eng A 527(26):6838–6843CrossRefGoogle Scholar
  46. 46.
    Gojny FH et al (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64(15):2363–2371CrossRefGoogle Scholar
  47. 47.
    Rafiee MA et al (2009) Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano 3(12):3884–3890CrossRefGoogle Scholar
  48. 48.
    Zhang W et al (2009) Heterogeneity in epoxy nanocomposites initiates crazing: significant improvements in fatigue resistance and toughening. Small 5(12):1403–1407CrossRefGoogle Scholar
  49. 49.
    Brcic M, Canadija M, Brnic J (2013) Estimation of material properties of nanocomposite structures. Meccanica 48(9):2209–2220MATHCrossRefGoogle Scholar
  50. 50.
    Blanco J et al (2009) Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nanotubes. J Compos Mater 43(8):825–841CrossRefGoogle Scholar
  51. 51.
    Wicks SS, de Villoria RG, Wardle BL (2010) Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Compos Sci Technol 70(1):20–28CrossRefGoogle Scholar
  52. 52.
    Gkikas G, Douka DD, Barkoula NM, Paipetis AS (2013) Interlaminar shear strength and thermo-mechanical properties of nano-enhanced composite materials under thermal shock. Proc SPIE 8689:86891QGoogle Scholar
  53. 53.
    Mukhopadhyay K, Dwivedi CD, Mathur GN (2002) Conversion of carbon nanotubes to carbon nanofibers by sonication. Carbon 40(8):1373–1376CrossRefGoogle Scholar
  54. 54.
    Miyagawa H, Drzal LT (2004) Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer 45(15):5163–5170CrossRefGoogle Scholar
  55. 55.
    Kostopoulos V et al (2007) Mode I interlaminar fracture of CNF or/and PZT doped CFRPs via acoustic emission monitoring. Compos Sci Technol 67(5):822–828CrossRefGoogle Scholar
  56. 56.
    Darweschsad M et al (1997) Development and test of the poloidal field prototype coil POLO at the Forschungszentrum Karlsruhe. Fusion Eng Des 36(2–3):227–250CrossRefGoogle Scholar
  57. 57.
    Rosato D (2003) Glossary. Plastics engineered product design. Elsevier Science, Amsterdam, pp 493–546Google Scholar
  58. 58.
    So HH, Cho JW, Sahoo NG (2007) Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. Eur Polym J 43(9):3750–3756CrossRefGoogle Scholar
  59. 59.
    Nadler M et al (2009) Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos A 40(6–7):932–937CrossRefGoogle Scholar
  60. 60.
    Gojny FH et al (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites: a comparative study. Compos Sci Technol 65(15–16):2300–2313CrossRefGoogle Scholar
  61. 61.
    Montazeri A et al (2011) An investigation on the effect of sonication time and dispersing medium on the mechanical properties of MWCNT/epoxy nanocomposites. Adv Mater 264–265:1954–1959CrossRefGoogle Scholar
  62. 62.
    Watson AS, Smith RL (1985) An examination of statistical theories for fibrous materials in the light of experimental data. J Mater Sci 20(9):3260–3270ADSCrossRefGoogle Scholar
  63. 63.
    Aggelis DG, Soulioti D, Barkoula NM, Paipetis AS, Matikas TE, Shiotani T (2009) Acoustic emission of steel-fiber concrete under four-point bending. Proc SPIE 7294:729407Google Scholar
  64. 64.
    Kostopoulos V et al (2009) Damage monitoring of carbon fiber reinforced laminates using resistance measurements. Improving sensitivity using carbon nanotube doped epoxy matrix system. J Intell Mater Syst Struct 20(9):1025–1034CrossRefGoogle Scholar
  65. 65.
    Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes. Carbon 36(11):1603–1612CrossRefGoogle Scholar
  66. 66.
    Yeh M-K, Tai N-H, Liu J-H (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44(1):1–9CrossRefGoogle Scholar
  67. 67.
    Affdl JCH, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16(5):344–352CrossRefGoogle Scholar
  68. 68.
    Fisher FT, Bradshaw RD, Brinson LC (2003) Fiber waviness in nanotube-reinforced polymer composites—I: modulus predictions using effective nanotube properties. Compos Sci Technol 63(11):1689–1703CrossRefGoogle Scholar
  69. 69.
    Shao LH et al (2009) Prediction of effective moduli of carbon nanotube–reinforced composites with waviness and debonding. Compos Struct 87(3):274–281CrossRefGoogle Scholar
  70. 70.
    Shady E, Gowayed Y (2010) Effect of nanotube geometry on the elastic properties of nanocomposites. Compos Sci Technol 70(10):1476–1481CrossRefGoogle Scholar
  71. 71.
    Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3(3):72–79ADSCrossRefGoogle Scholar
  72. 72.
    Hsieh TH et al (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46(23):7525–7535ADSCrossRefGoogle Scholar
  73. 73.
    Yu M-F et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640ADSCrossRefGoogle Scholar
  74. 74.
    Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 49(4):89–112CrossRefGoogle Scholar
  75. 75.
    Tai N-H, Yeh M-K, Peng T-H (2008) Experimental study and theoretical analysis on the mechanical properties of SWNTs/phenolic composites. Compos B 39(6):926–932CrossRefGoogle Scholar
  76. 76.
    Hull D, Clyne TW (1996) An introduction to composite materials, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  77. 77.
    Yu MF et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640ADSCrossRefGoogle Scholar
  78. 78.
    Demczyk BG et al (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334(1–2):173–178CrossRefGoogle Scholar
  79. 79.
    Kim J-K, Mai Y-W (1998) Engineered interfaces in fiber reinforced composites. Elsevier Science Ltd, OxfordGoogle Scholar
  80. 80.
    Wichmann MHG, Schulte K, Wagner HD (2008) On nanocomposite toughness. Compos Sci Technol 68(1):329–331CrossRefGoogle Scholar
  81. 81.
    Tsantzalis S et al (2007) On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles. Compos A 38(4):1159–1162CrossRefGoogle Scholar
  82. 82.
    Fiedler B et al (2006) Fundamental aspects of nano-reinforced composites. Compos Sci Technol 66(16):3115–3125CrossRefGoogle Scholar
  83. 83.
    Barber AH, Cohen SR, Wagner HD (2003) Measurement of carbon nanotube–polymer interfacial strength. Appl Phys Lett 82(23):4140–4142ADSCrossRefGoogle Scholar
  84. 84.
    Barber AH et al (2004) Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos Sci Technol 64(15):2283–2289ADSCrossRefGoogle Scholar
  85. 85.
    Huang Y, Kinloch AJ (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymers. J Mater Sci 27(10):2753–2762ADSCrossRefGoogle Scholar
  86. 86.
    Sultan JN, McGarry FJ (1973) Effect of rubber particle size on deformation mechanisms in glassy epoxy. Polym Eng Sci 13(1):29–34CrossRefGoogle Scholar
  87. 87.
    Guild FJ, Young RJ (1989) A predictive model for particulate-filled composite materials. J Mater Sci 24(1):298–306ADSCrossRefGoogle Scholar
  88. 88.
    Guild FJ, Young RJ (1989) A predictive model for particulate filled composite materials. J Mater Sci 24(7):2454–2460ADSCrossRefGoogle Scholar
  89. 89.
    Zhandarov S et al (2001) Investigation of load transfer between the fiber and the matrix in pull-out tests with fibers having different diameters. J Adhes Sci Technol 15(2):205–222CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece

Personalised recommendations