, Volume 50, Issue 4, pp 995–1001 | Cite as

Control of droplet collapse during coarsening process by imposing shear flow: a lattice Boltzmann simulation

  • Ehsan Amiri Rad


The effects of shear flow on droplet collapse during the coarsening process in a vapor–liquid system are investigated by a free energy lattice Boltzmann model. To simulate different viscosity ratios, a local relaxation time parameter is integrated with LBM algorithm. The results show that for zero and small shear rates, droplet coarsening happens in its regular pattern where small droplet is collapsed while greater one grows (sub-critical regime). But if the shear rate be greater than a critical value, collapse is abated, droplet coarsening is inverted and smaller droplet grows (super-critical regime). Therefore during coarsening process, collapse mechanism can be controlled by imposing suitable shear flow. Also it is shown that, higher droplet radius ratio, viscosity ratio and surface tension lead to higher critical shear rate of collapse while higher density ratio of liquid and vapor decreases that.


Coarsening Droplet collapse Two-phase Lattice Boltzmann Local relaxation Shear flow 


  1. 1.
    Gouin H, Slemrod M (1995) Stability of spherical isothermal liquid-vapor interfaces. Meccanica 30:305–319CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Amiri Rad E (2014) Coalescence of two at-rest equal-sized drops in static vapor of the same material: a lattice Boltzmann approach. J Mech Sci Technol 28(9):3597–3603CrossRefGoogle Scholar
  3. 3.
    Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50CrossRefADSGoogle Scholar
  4. 4.
    Wagner C (1961) Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Zeitschrift für Elektrochemie 65(7):581–591Google Scholar
  5. 5.
    Kahlweit M (1975) Ostwald ripening of precipitates. Adv Colloid Interface Sci 5(1):1–35CrossRefGoogle Scholar
  6. 6.
    Vladimirova N, Malagoli A, Mauri R (1998) Diffusion-driven phase separation of deeply quenched mixtures. Phys Rev E 58(6):7691–7699CrossRefADSGoogle Scholar
  7. 7.
    Gunstensen AK, Rothman DH, Zaleski S, Zanetti G (1991) Lattice Boltzmann model of immiscible fluids. Phys Rev A 43:4320–4327CrossRefADSGoogle Scholar
  8. 8.
    Shan XW, Chen HD (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815–1819CrossRefADSGoogle Scholar
  9. 9.
    Shan X, Chen H (1994) Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys Rev E 49:2941–2948CrossRefADSGoogle Scholar
  10. 10.
    Hou S, Zou Q, Chen S, Doolen G, Cogley AC (1995) Simulation of cavity flow by the lattice Boltzmann method. J Comput Phys 118:329–347CrossRefADSMATHGoogle Scholar
  11. 11.
    Swift MR, Osborn WR, Yeomans JM (1995) Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett 75:830–833CrossRefADSGoogle Scholar
  12. 12.
    Swift MR, Orlandini E, Osborn WR, Yeomans JM (1996) Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys Rev E 54:5041–5052CrossRefADSGoogle Scholar
  13. 13.
    He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J Comput Phys 152(2):642–663CrossRefADSMATHMathSciNetGoogle Scholar
  14. 14.
    He X, Doolen G (2002) Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys 107:309–328CrossRefMATHGoogle Scholar
  15. 15.
    Lee T, Lin C-L (2005) A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J Comput Phys 206(1):16–47CrossRefADSMATHMathSciNetGoogle Scholar
  16. 16.
    Wagner A (2006) Thermodynamic consistency of liquid-gas lattice Boltzmann simulations. Phys Rev E 74(5):056703CrossRefADSGoogle Scholar
  17. 17.
    Kikkinides E, Yiotis A, Kainourgiakis M, Stubos A (2008) Thermodynamic consistency of liquid–gas lattice Boltzmann methods: interfacial property issues. Phys Rev E 78(3):036702CrossRefADSGoogle Scholar
  18. 18.
    Briant AJ, Wagner AJ, Yeomans JM (2004) Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems. Phys Rev E 69:031602CrossRefADSGoogle Scholar
  19. 19.
    Kusumaatmaja H, Dupuis A, Yeomans JM (2006) Lattice Boltzmann simulations of drop dynamics. Math Comput Simul 72(2–6):160–164CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Dupuis A, Yeomans JM (2005) Modeling droplets on superhydrophobic surfaces: equilibrium states and transitions. Langmuir 21:2624–2629CrossRefGoogle Scholar
  21. 21.
    Mattila KK, Siebert DN, Hegele LA Jr, Philippi PC (2013) High-order lattice-Boltzmann equations and stencils for multiphase models. Int J Mod Phys C 24(12):1340006CrossRefADSGoogle Scholar
  22. 22.
    Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, OxfordMATHGoogle Scholar
  23. 23.
    Holdych DJ, Rovas D, Georgiadis JG, Buckius RO (1998) An improved hydrodynamics formulation for multiphase flow lattice-Boltzmann models. Int J Mod Phys C 9:1393–1404CrossRefADSGoogle Scholar
  24. 24.
    Evans R (1979) The nature of the liquid–vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv Phys 28:143–200CrossRefADSGoogle Scholar
  25. 25.
    Landau LD, Lifshitz EM (1958) Statistical physics. Pergamon Press, BerlinMATHGoogle Scholar
  26. 26.
    Amiri Rad E (2014) Investigation the effects of shear rate on stationary droplets coalescence by lattice Boltzmann. Meccanica 49(6):1457–1467CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Khatavkar VV, Anderson PD, Meijer HEM (2006) On scaling of diffuse–interface models. Chem Eng Sci 61:2364–2378CrossRefGoogle Scholar
  28. 28.
    Mahpeykar MR, Teymourtash AR, Amiri Rad E (2013) Theoretical investigation of effects of local cooling of a nozzle divergent section for controlling condensation shock in a supersonic two-phase flow of steam. Meccanica 48(4):815–827CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Hakim Sabzevari UniversitySabzevarIran

Personalised recommendations