Skip to main content
Log in

Non-local theory solution to a 3-D rectangular crack in an infinite transversely isotropic elastic material

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The non-local theory solution to a 3-D rectangular crack in an infinite transversely isotropic elastic material is proposed by means of the generalized Almansi’s theorem and the Schmidt method in the present paper. By using the Fourier transform and defining the jumps of displacement across the crack surface as the unknown variables, three pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of displacement across the crack surface are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the geometric shape of the rectangular crack and the lattice parameter of the material on the stress field near the crack edges. Unlike the classical solution, the present solution is no stress singularity along the rectangular crack edges, i.e. the stress field near the rectangular crack edges is finite. Therefore, we can use the maximum stress as a fracture criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rubio-Gonzalez C, Mason JJ (1999) Response of finite cracks in orthotropic materials due to concentrated impact shear loads. ASME J Appl Mech 66:485–491

    Article  Google Scholar 

  2. Shol CW, Lee KY (2001) Dynamic response of subsurface interface crack in multi-layered orthotropic half-space under anti-plane shear impact loading. Int J Solids Struct 38:3563–3574

    Article  Google Scholar 

  3. Zhu BJ, Qin TY (2007) Hypersingular integral equation method for a three-dimensional crack in anisotropic electro-magneto-elastic bimaterials. Theor Appl Fract Mech 47:219–232

    Article  Google Scholar 

  4. Li YS, Feng WJ, Xu ZH (2009) A penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric layer. Meccanica 44:377–387

    Article  MATH  Google Scholar 

  5. Qin TY, Noda NA (2003) Stress intensity factors of a rectangular crack meeting a bimaterial interface. Int J Solids Struct 40:2473–2486

    Article  MATH  Google Scholar 

  6. Zhou ZG, Wang B (2006) An interface crack for a functionally graded strip sandwiched between two homogeneous layers of finite thickness. Meccanica 41:79–99

    Article  MATH  MathSciNet  Google Scholar 

  7. Ueda S (2008) Transient thermoelectroelastic response of a functionally graded piezoelectric strip with a penny-shaped crack. Eng Fract Mech 75:1204–1222

    Article  Google Scholar 

  8. Itou S (2007) Transient dynamic stress intensity factors around two rectangular cracks in a nonhomogeneous interfacial layer between two dissimilar elastic half-spaces under impact load. Acta Mech 192:89–110

    Article  MATH  Google Scholar 

  9. Itou S (2007) Dynamic stress intensity factors around a cylindrical crack in an infinite elastic medium subject to impact load. Int J Solids Struct 44:7340–7356

    Article  MATH  Google Scholar 

  10. Itou S (2010) Dynamic stress intensity factors for two parallel interface cracks between a nonhomogeneous bonding layer and two dissimilar elastic half-planes subject to an impact load. Int J Solids Struct 47:2155–2163

    Article  MATH  Google Scholar 

  11. Hsu WH, Chue CH (2009) Mode III fracture problem of an arbitrarily oriented crack in an FGPM strip bonded to a homogeneous piezoelectric half plane. Meccanica 44:519–534

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhou ZG, Liu JY, Wu LZ (2012) Basic solutions of a 3-D rectangular limited-permeable crack or two 3-D rectangular limited-permeable cracks in piezoelectric materials. Meccanica 47:109–134

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhou ZG, Hui JF, Wu LZ (2008) Basic solution of a mode-I limited-permeable crack in functionally graded piezoelectric materials. Meccanica 43:21–35

    Article  MATH  MathSciNet  Google Scholar 

  14. Shi PP, Sun S, Li X (2013) Arc-shaped interfacial crack in a non-homogeneous electro-elastic hollow cylinder with orthotropic dielectric layer. Meccanica 48:415–426

    Article  MATH  MathSciNet  Google Scholar 

  15. Eringen AC, Kim BS (1974) Stress concentration at the tip of crack. Mech Res Commun 1:233–237

    Article  Google Scholar 

  16. Eringen AC (1976) Non-local polar field theory. In: Eringen AC (ed) Continuum physics, vol 4. Academic Press, New York

    Google Scholar 

  17. Edelen DGB (1976) Non-local field theory. In: Eringen AC (ed) Continuum physics, vol 4. Academic Press, New York

    Google Scholar 

  18. Green AE, Rivilin RS (1965) Multipolar continuum mechanics: functional theory. Proc R Soc Lond A 284:303–315

    Article  ADS  Google Scholar 

  19. Pan KL, Takeda N (1998) Non-local stress field of interface dislocations. Arch Appl Mech 68:179–184

    Article  MATH  Google Scholar 

  20. Eringen AC, Speziale CG, Kim BS (1977) Crack tip problem in non-local elasticity. J Mech Phys Solids 25:339–346

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Eringen AC (1978) Linear crack subject to shear. Int J Fract 14:367–379

    Article  MathSciNet  Google Scholar 

  22. Eringen AC (1979) Linear crack subject to anti-plane shear. Eng Fract Mech 12:211–219

    Article  Google Scholar 

  23. Zhou ZG, Han JC, Du SY (1999) Investigation of a Griffith crack subject to anti-plane shear by using the non-local theory. Int J Solids Struct 36:3891–3901

    Article  MATH  Google Scholar 

  24. Zhou ZG, Wang B, Sun YG (2003) Investigation of the dynamic behavior of two parallel symmetric cracks in piezoelectric materials use of non-local theory. Int J Solids Struct 40:747–762

    Article  MATH  Google Scholar 

  25. Zhou ZG, Sun YG, Wang B (2004) Investigation of the dynamic behavior of a Griffith crack in a piezoelectric material strip subjected to the harmonic elastic anti-plane shear waves by use of the non-local theory. Meccanica 39:63–76

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhou ZG, Wu LZ, Wang B (2006) The scattering of harmonic elastic anti-plane shear waves by two collinear cracks in anisotropic material plane by using the non-local theory. Meccanica 41:591–598

    Article  MATH  Google Scholar 

  27. Zhou ZG, Wang B (2006) Non-local theory solution of two collinear cracks in the functionally graded materials. Int J Solids Struct 43:887–898

    Article  MATH  Google Scholar 

  28. Morse PM, Feshbach H (1958) Methods of theoretical physics, vol 1. McGraw-Hill, New York

    Google Scholar 

  29. Zhang PW, Zhou ZG, Wu LZ (2010) Non-local theory solution of a mode-I crack in a piezoelectric/piezomagnetic composite material plane. Int J Fract 164:213–229

    Article  MATH  Google Scholar 

  30. Eringen AC, Kim BS (1977) Relation between non-local elasticity and lattice dynamics. Cryst Lattice Defects 7:51–57

    Google Scholar 

  31. Chen WQ, Lee KY, Ding HJ (2004) General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method. Int J Eng Sci 42:1361–1379

    Article  MATH  Google Scholar 

  32. Yang FQ (2001) Fracture mechanics for a Mode I crack in piezoelectric materials. Int J Solids Struct 38:3813–3830

    Article  MATH  Google Scholar 

  33. Ding HJ, Chen B, Liang J (1996) General solutions for coupled equations for piezoelectric media. Int J Solids Struct 33:2283–2296

    Article  MATH  Google Scholar 

  34. Gradshteyn IS, Ryzhik IM (1980) Table of integrals, series and products. Academic Press, New York

    MATH  Google Scholar 

  35. Erdelyi A (ed) (1954) Tables of integral transforms, vol 1. McGraw-Hill, New York

    Google Scholar 

  36. Eringen AC (1983) Interaction of a dislocation with a crack. J Appl Phys 54:6811–6817

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support by the National Natural Science Foundation of China (11272105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Gong Zhou.

Appendix

Appendix

The (38) and (39) can be rewritten as

$$ Ma + Mb = \left[ \begin{gathered} \bar{f}_{1} \hfill \\ \bar{f}_{2} \hfill \\ 0 \hfill \\ \end{gathered} \right],\quad Na - Nb = \left[ \begin{gathered} \bar{f}_{3} \hfill \\ 0 \hfill \\ 0 \hfill \\ \end{gathered} \right] $$
(63)

where \( M = \left[ {\begin{array}{*{20}c} {s\chi_{1}^{(1)} } & {s\chi_{2}^{(1)} } & t \\ {t\chi_{1}^{(1)} } & {t\chi_{2}^{(1)} } & { - s} \\ {\beta_{1}^{(1)} h_{1}^{*} } & {\beta_{2}^{(1)} h_{2}^{*} } & 0 \\ \end{array} } \right] \), \( N = \left[ {\begin{array}{*{20}c} {\chi_{1}^{(2)} } & {\chi_{2}^{(2)} } & 0 \\ {\beta_{1}^{(2)} h_{1}^{*} } & {\beta_{2}^{(2)} h_{2}^{*} } & {\beta_{0}^{(2)} h_{0}^{*} } \\ {\beta_{1}^{(3)} h_{1}^{*} } & {\beta_{2}^{(3)} h_{2}^{*} } & {\beta_{0}^{(3)} h_{0}^{*} } \\ \end{array} } \right] \), \( a = \left[ \begin{gathered} A_{1} \hfill \\ A_{2} \hfill \\ A_{3} \hfill \\ \end{gathered} \right] \), \( b = \left[ \begin{gathered} B_{1} \hfill \\ B_{2} \hfill \\ B_{3} \hfill \\ \end{gathered} \right] \), A 3 = A 0 and B 3 = −B 0.

So it can be obtained that

$$ a = \frac{1}{2}M^{ - 1} \left[ \begin{gathered} \bar{f}_{1} \hfill \\ \bar{f}_{2} \hfill \\ 0 \hfill \\ \end{gathered} \right] + \frac{1}{2}N^{ - 1} \left[ \begin{gathered} \bar{f}_{3} \hfill \\ 0 \hfill \\ 0 \hfill \\ \end{gathered} \right],\quad b = \frac{1}{2}M^{ - 1} \left[ \begin{gathered} \bar{f}_{1} \hfill \\ \bar{f}_{2} \hfill \\ 0 \hfill \\ \end{gathered} \right] - \frac{1}{2}N^{ - 1} \left[ \begin{gathered} \bar{f}_{3} \hfill \\ 0 \hfill \\ 0 \hfill \\ \end{gathered} \right] $$
(64)

So the unknown functions A k and B k can be expressed a

$$ A_{k} = \frac{1}{2}(m_{k1} \bar{f}_{1} + m_{k2} \bar{f}_{2} + n_{k1} \bar{f}_{3} ),\quad B_{k} = \frac{1}{2}(m_{k1} \bar{f}_{1} + m_{k2} \bar{f}_{2} - n_{k1} \bar{f}_{3} ) $$
(65)

where [m kj ]3×3 = [M]−1, [n kj ]3×3 = [N]−1.

Substituting (65) into (63), it can be obtained:

$$ \bar{f}_{1} \left[ {\begin{array}{*{20}c} {s\chi_{1}^{(1)} } & {s\chi_{2}^{(1)} } & t \\ {t\chi_{1}^{(1)} } & {t\chi_{2}^{(1)} } & { - s} \\ {\beta_{1}^{(1)} h_{1}^{*} } & {\beta_{2}^{(1)} h_{2}^{*} } & 0 \\ \end{array} } \right]\left[ \begin{gathered} m_{11} \hfill \\ m_{21} \hfill \\ m_{31} \hfill \\ \end{gathered} \right] + \bar{f}_{2} \left[ {\begin{array}{*{20}c} {s\chi_{1}^{(1)} } & {s\chi_{2}^{(1)} } & t \\ {t\chi_{1}^{(1)} } & {t\chi_{2}^{(1)} } & { - s} \\ {\beta_{1}^{(1)} h_{1}^{*} } & {\beta_{2}^{(1)} h_{2}^{*} } & 0 \\ \end{array} } \right]\left[ \begin{gathered} m_{12} \hfill \\ m_{22} \hfill \\ m_{32} \hfill \\ \end{gathered} \right] = \left[ \begin{gathered} \bar{f}_{1} \hfill \\ \bar{f}_{2} \hfill \\ 0 \hfill \\ \end{gathered} \right] $$
(66)
$$ \bar{f}_{3} \left[ {\begin{array}{*{20}c} {\chi_{1}^{(2)} } & {\chi_{2}^{(2)} } & 0 \\ {\beta_{1}^{(2)} h_{1}^{*} } & {\beta_{2}^{(2)} h_{2}^{*} } & {\beta_{0}^{(2)} h_{0}^{*} } \\ {\beta_{1}^{(3)} h_{1}^{*} } & {\beta_{2}^{(3)} h_{2}^{*} } & {\beta_{0}^{(3)} h_{0}^{*} } \\ \end{array} } \right]\left[ \begin{gathered} n_{11} \hfill \\ n_{21} \hfill \\ n_{31} \hfill \\ \end{gathered} \right] = \left[ \begin{gathered} \bar{f}_{3} \hfill \\ 0 \hfill \\ 0 \hfill \\ \end{gathered} \right] $$
(67)

Therefore, we have

$$ \left[ {\begin{array}{*{20}c} {s\chi_{1}^{(1)} } & {s\chi_{2}^{(1)} } & t \\ {t\chi_{1}^{(1)} } & {t\chi_{2}^{(1)} } & { - s} \\ {\beta_{1}^{(1)} h_{1}^{*} } & {\beta_{2}^{(1)} h_{2}^{*} } & 0 \\ \end{array} } \right]\left\{ {\left[ \begin{gathered} m_{11} \hfill \\ m_{21} \hfill \\ m_{31} \hfill \\ \end{gathered} \right]\bar{f}_{1} + \left[ \begin{gathered} m_{12} \hfill \\ m_{22} \hfill \\ m_{32} \hfill \\ \end{gathered} \right]\bar{f}_{2} } \right\} = \left[ \begin{gathered} \bar{f}_{1} \hfill \\ \bar{f}_{2} \hfill \\ 0 \hfill \\ \end{gathered} \right] \Rightarrow \sum\limits_{k = 1}^{2} {\beta_{k}^{(1)} h_{k}^{*} (} m_{k1} \bar{f}_{1} + m_{k2} \bar{f}_{2} ) = 0 $$
(68)
$$ \left[ {\begin{array}{*{20}c} {\chi_{1}^{(2)} } & {\chi_{2}^{(2)} } & 0 \\ {\beta_{1}^{(2)} h_{1}^{*} } & {\beta_{2}^{(2)} h_{2}^{*} } & {\beta_{0}^{(2)} h_{0}^{*} } \\ {\beta_{1}^{(3)} h_{1}^{*} } & {\beta_{2}^{(3)} h_{2}^{*} } & {\beta_{0}^{(3)} h_{0}^{*} } \\ \end{array} } \right]\left[ \begin{gathered} n_{11} \hfill \\ n_{21} \hfill \\ n_{31} \hfill \\ \end{gathered} \right] = \left[ \begin{gathered} 1 \hfill \\ 0 \hfill \\ 0 \hfill \\ \end{gathered} \right] \Rightarrow \left\{ \begin{gathered} \sum\limits_{k = 1}^{2} {\beta_{k}^{(2)} } h_{k}^{*} n_{k1} + \beta_{0}^{(2)} h_{0}^{*} n_{31} = 0 \hfill \\ \sum\limits_{k = 1}^{2} {\beta_{k}^{(3)} } h_{k}^{*} n_{k1} + \beta_{0}^{(3)} h_{0}^{*} n_{31} = 0 \hfill \\ \end{gathered} \right. $$
(69)

Substituting (65) into (35) and applying (68) and (69), we have

$$ \begin{aligned} \sigma_{zz}^{ * (1)} (x,y,0) & = \frac{2}{{\pi^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\sum\limits_{k = 1}^{2} {\beta_{k}^{(1)} (s,t)h_{k}^{*} (p,s,t)} } \,\times\,(m_{k1} \bar{f}_{1} + m_{k2} \bar{f}_{2} + n_{k1} \bar{f}_{3} )} \cos (sx)\cos (ty)dsdt \\ & = \frac{2}{{\pi^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\sum\limits_{k = 1}^{2} {\beta_{k}^{(1)} (s,t)h_{k}^{*} (p,s,t)} }\,\times\, n_{k1} \bar{f}_{3} \cos (sx)\cos (ty)dsdt} \\ & = \frac{2}{{\pi^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {g_{1} (p,s,t)} \,\times\,\bar{f}_{3} \cos (sx)\cos (ty)dsdt} \\ \end{aligned} $$
(70)
$$ \begin{aligned} \sigma_{xz}^{ * (1)} (x,y,0) & = \frac{2}{{\pi^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\left[ {\sum\limits_{k = 1}^{2} {\beta_{k}^{(2)} (s,t)h_{k}^{*} (p,s,t)(m_{k1} \bar{f}_{1} + m_{k2} \bar{f}_{2} + n_{k1} \bar{f}_{3} )} } \right.} } \\ & \quad \left. { + \beta_{0}^{(2)} (s,t)h_{0}^{*} (p,s,t)n_{31} \bar{f}_{3} } \right]\sin (sx)\cos (ty)dsdt \\ & = \frac{2}{{\pi^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\sum\limits_{k = 1}^{2} {\beta_{k}^{(2)} (s,t)h_{k}^{*} (p,s,t)} } (m_{k1} \bar{f}_{1} + m_{k2} \bar{f}_{2} )\sin (sx)\cos (ty)dsdt} \\ & = \frac{2}{{\pi^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } [ g_{2} (p,s,t)\bar{f}_{1} + g_{3} (p,s,t)\bar{f}_{2} ]\sin (sx)\cos (ty)dsdt} \\ \end{aligned} $$
(71)
$$ \begin{aligned} \sigma_{yz}^{ * (1)} (x,y,0) & = \frac{2}{{\pi^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\left[ {\sum\limits_{k = 1}^{2} {\beta_{k}^{(3)} (s,t)h_{k}^{*} (p,s,t)(m_{k1} \bar{f}_{1} + m_{k2} \bar{f}_{2} + n_{k1} \bar{f}_{3} )} } \right.} } \\ & \quad \left. { + \beta_{0}^{(3)} (s,t)h_{0}^{*} (p,s,t)n_{31} \bar{f}_{3} } \right]\cos (sx)\sin (ty)dsdt \\ & = \frac{2}{{\pi^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\sum\limits_{k = 1}^{2} {\beta_{k}^{(3)} (s,t)} } h_{k}^{*} (p,s,t)(m_{k1} \bar{f}_{1} + m_{k2} \bar{f}_{2} )\cos (sx)\sin (ty)dsdt} \\ & = \frac{2}{{\pi^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } [ g_{4} (p,s,t)\bar{f}_{1} + g_{5} (p,s,t)\bar{f}_{2} ]\cos (sx)\sin (ty)dsdt} \\ \end{aligned} $$
(72)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HT., Zhou, ZG. & Wu, LZ. Non-local theory solution to a 3-D rectangular crack in an infinite transversely isotropic elastic material. Meccanica 50, 1103–1120 (2015). https://doi.org/10.1007/s11012-014-0077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0077-9

Keywords

Navigation