, Volume 50, Issue 1, pp 233–251 | Cite as

On controlling the response of primary and parametric resonances of a nonlinear magnetic levitation system

  • M. Eissa
  • A. Kandil
  • M. Kamel
  • W. A. El-Ganaini


In this paper, a proportional-derivative controller is proposed to reduce the horizontal vibration of a magnetically levitated system having quadratic and cubic nonlinearities to primary and parametric excitations. A second order approximate solution is sought using the method of multiple scales perturbation technique to clarify the nonlinear behavior for both amplitude and phase of the system. The effect of feedback signal gain is studied to indicate the optimum values for best performance. Validation curves are included to compare the approximate solution and the numerical simulation. A comparison with previously published work is included.


Multiple scales perturbation technique Second order approximation Proportional derivative controller Controller effectiveness Jump phenomenon 

List of symbols

\( y,\,{\dot{y}},\,{\ddot{y}} \)

Displacement, velocity and acceleration

\( \mu \)

Linear damping coefficient

\( \alpha_{2} ,\,\alpha_{3} \)

Quadratic and cubic stiffness nonlinearity parameters

\( f \)

External excitation force amplitude

\( \Omega \)

External excitation frequency

\( p,\,d \)

Proportional and derivative gains

\( k_{1} ,\,k_{2} ,\,k_{3} \)

Constants dependent on the magnetic forces between magnets

\( \varepsilon \)

Small perturbation parameter

\( \sigma_{1} ,\,\sigma_{2} \)

Detuning parameters


  1. 1.
    Jo H, Yabuno H (2009) Amplitude reduction of primary resonance of nonlinear oscillator by a dynamic vibration absorber using nonlinear coupling. Nonlinear Dyn 55:67–78CrossRefMATHGoogle Scholar
  2. 2.
    Jo H, Yabuno H (2010) Amplitude reduction of parametric resonance by dynamic vibration absorber based on quadratic nonlinear coupling. J Sound Vib 329:2205–2217CrossRefADSGoogle Scholar
  3. 3.
    Yabuno H, Kanda R, Lacarbonara W, Aoshima N (2004) Nonlinear active cancellation of the parametric resonance in a magnetically levitated body. J Dyn Syst Meas Contr 126(3):433–442CrossRefGoogle Scholar
  4. 4.
    Aly M, Alberts T (2012) On levitation and lateral control of electromagnetic suspension maglev systems. J Dyn Syst Meas Control 134:061012-1Google Scholar
  5. 5.
    Tusset AM, Balthazar JM, Felix JLP (2013) On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls. J Vib Control 19(6):803–813CrossRefMathSciNetGoogle Scholar
  6. 6.
    Warminski J, Bochenski M, Jarzyna W, Filipek P, Augustyniak M (2011) Active suppression of nonlinear composite beam vibrations by selected control algorithms. Commun Nonlinear Sci Numer Simulat 16:2237–2248CrossRefADSGoogle Scholar
  7. 7.
    Shin C, Hong C, Jeong WB (2012) Active vibration control of clamped beams using positive position feedback controllers with moment pair. J Mech Sci Technol 26(3):731–740CrossRefGoogle Scholar
  8. 8.
    El-Ganaini WA, Saeed NA, Eissa M (2013) Positive position feedback controller (PPF) for suppression of nonlinear sytem vibration. Nonlinear Dyn 72:517–537CrossRefMathSciNetGoogle Scholar
  9. 9.
    Eissa M, Sayed M (2006) A comparison between active and passive vibration control of non-linear simple pendulum, Part I: transversally tuned absorber and negative \( G\dot{\varphi }^{n} \) feedback. Math Comput Appl 11(2):137–149MATHMathSciNetGoogle Scholar
  10. 10.
    Eissa M, Sayed M (2006) A comparison between active and passive vibration control of non-linear simple pendulum, Part II: Longitudinal tuned absorber and negative \( G{\ddot{\varphi}} \) and \( G\varphi^{n} \) feedback. Math Comput Appl 1(2):151–162MathSciNetGoogle Scholar
  11. 11.
    Eissa M, Bauomy HS, Amer YA (2007) Active control of an aircraft tail subject to harmonic excitation. Acta Mech Sin 23:451–462CrossRefMATHADSGoogle Scholar
  12. 12.
    Eissa M, El-Ganaini WAA, Hamed YS (2005) Saturation, Stability and resonance of non-linear systems. Phys A 356:341–358CrossRefMathSciNetGoogle Scholar
  13. 13.
    Eissa M, Sayed M (2008) Vibration reduction of a three DOF non-linear spring pendulum. Commun Nonlinear Sci Numer Simul 13:465–488CrossRefMATHADSGoogle Scholar
  14. 14.
    Amer YA, Bauomy HS, Sayed M (2009) Vibration suppression in a twin-tail system to parametric and external excitation. Comput Math Appl 58:1947–1964CrossRefMATHGoogle Scholar
  15. 15.
    Nayfeh AH, Mook DT (1995) Nonlinear oscillations. Wiley, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. Eissa
    • 1
  • A. Kandil
    • 1
  • M. Kamel
    • 1
  • W. A. El-Ganaini
    • 1
  1. 1.Department of Physics and Engineering Mathematics, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations