, Volume 50, Issue 1, pp 207–216 | Cite as

State space reconstruction applied to a multiparameter chaos control method



The idea of the chaos control is the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The OGY method achieves system stabilization by using small perturbations promoted in the neighborhood of the desired orbit when the trajectory crosses a Poincaré section. A generalization of this method considers multiple actuations of parameters and sections, known as semi-continuous multiparameter method. This paper investigates the state space reconstruction applied to this general method, allowing chaotic behavior control of systems with non-observable states using multiple control parameters from time series analysis, avoiding the use of governing equations. As an application of the proposed multiparameter general formulation it is presented an uncoupled approach where the control parameters do not influence the system dynamics when they are not active. This method is applied to control chaos in a nonlinear pendulum using delay coordinates to perform state space reconstruction. Results show that the proposed procedure can be applied together with delay coordinates providing UPO stabilization.


Chaos control Nonlinear dynamics Pendulum State space reconstruction Delay coordinates 



The authors would like to acknowledge the support of the Brazilian Research Agencies CNPq, CAPES and FAPERJ and through the INCT-EIE (National Institute of Science and Technology—Smart Structures in Engineering) the CNPq and FAPEMIG. The Air Force Office of Scientific Research (AFOSR) is also acknowledged.


  1. 1.
    Andrievskii BR, Fradkov AL (2004) Control of chaos: methods and applications. II. Applications. Autom Remote Control 65(4):505–533CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Arecchi FT, Boccaletti S, Ciofini M, Meucci R (1998) The control of chaos: theoretical schemes and experimental realizations. Int J Bifurc Chaos 8(8):1643–1655CrossRefMATHGoogle Scholar
  3. 3.
    Auerbach D, Cvitanovic P, Eckmann J-P, Gunaratne G, Procaccia I (1987) Exploring chaotic motion through periodic orbits. Phys Rev Lett 58(23):2387–2389CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Barreto E, Grebogi C (1995) Multiparameter control of chaos. Phys Rev E 54(4):3553–3557CrossRefADSGoogle Scholar
  5. 5.
    Bessa WM, de Paula AS, Savi MA (2009) Chaos control using an adaptive fuzzy sliding mode controller with application to a nonlinear pendulum. Chaos Solitons Fractals 42(2):784–791CrossRefMATHADSGoogle Scholar
  6. 6.
    Bessa WM, de Paula AS, Savi MA (2012) Sliding mode control with adaptive fuzzy dead-zone compensation for uncertain chaotic systems. Nonlinear Dyn 70(3):1989–2001CrossRefGoogle Scholar
  7. 7.
    Bessa WM, de Paula AS, Savi MA (2013) Adaptive fuzzy sliding mode control of a chaotic pendulum with noisy signals. ZAMM J Appl Math Mech. doi: 10.1002/zamm.201200214 Google Scholar
  8. 8.
    de Korte RJ, Schouten JC, van den Bleek CMV (1995) Experimental control of a chaotic pendulum with unknown dynamics using delay coordinates. Phys Rev E 52(4):3358–3365CrossRefADSGoogle Scholar
  9. 9.
    De Paula AS, Savi MA (2008) A multiparameter chaos control method applied to maps. Braz J Phys 38(4):537–543CrossRefADSGoogle Scholar
  10. 10.
    De Paula AS, Savi MA (2009) A multiparameter chaos control method based on OGY approach. Chaos Solitons Fractals 40(3):1376–1390CrossRefMATHADSGoogle Scholar
  11. 11.
    De Paula AS, Savi MA (2009) Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method. Chaos Solitons Fractals 42(5):2981–2988CrossRefMATHADSGoogle Scholar
  12. 12.
    De Paula AS, Savi MA (2011) Comparative analysis of chaos control methods: a mechanical system case study. Int J Non-Linear Mech 46(8):1076–1089CrossRefGoogle Scholar
  13. 13.
    De Paula AS, Savi MA, Pereira-Pinto FHI (2006) Chaos and transient chaos in an experimental nonlinear pendulum. J Sound Vib 294(3):585–595CrossRefADSGoogle Scholar
  14. 14.
    De Paula AS, Savi MA, Wiercigroch M, Pavlovskaia E (2012) Bifurcation control of a parametric pendulum. Int J Bifurc Chaos 22(5):1–14, Article 1250111Google Scholar
  15. 15.
    Dressler U, Nitsche G (1992) Controlling chaos using time delay coordinates. Phys Rev Lett 68(1):1–4CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Ferreira BB, de Paula AS, Savi MA (2011) Chaos control applied to heart rhythm dynamics. Chaos Solitons Fractals 44(8):587–599CrossRefADSGoogle Scholar
  17. 17.
    Fradkov AL, Evans RJ, Andrievsky BR (2006) Control of chaos: methods and applications in mechanics. Phylos Trans R Soc 364:2279–2307CrossRefMATHADSMathSciNetGoogle Scholar
  18. 18.
    Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140CrossRefMATHADSMathSciNetGoogle Scholar
  19. 19.
    Grebogi C, Lai Y-C (1997) Controlling chaotic dynamical systems. Syst Control Lett 31:307–312CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Hübinger B, Doerner R, Martienssen W, Herdering M, Pitka R, Dressler U (1994) Controlling chaos experimentally in systems exhibiting large effective Lyapunov exponents. Phys Rev E 50(2):932–948CrossRefADSGoogle Scholar
  21. 21.
    Kapitaniak T (1992) Controlling chaotic oscillators without feedback. Chaos Solitons Fractals 2(5):512–530CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Kapitaniak T (2005) Controlling chaos: theoretical and practical methods in non-linear dynamics. Academic Press Inc, San DiegoGoogle Scholar
  23. 23.
    Ogorzalek M (1994) Chaos control: how to avoid chaos or take advantage of it. J Franklin Inst 331B(6):681–704CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Otani M, Jones AJ (1997) Guiding chaotic orbits Research Report—Imperial College of Science Technology and Medicine, LondonGoogle Scholar
  25. 25.
    Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64(11):1196–1199CrossRefMATHADSMathSciNetGoogle Scholar
  26. 26.
    Pereira-Pinto FHI, Ferreira AM, Savi MA (2004) Chaos control in a nonlinear pendulum using a semi-continuous method. Chaos Solitons Fractals 22(3):653–668CrossRefMATHADSGoogle Scholar
  27. 27.
    Pereira-Pinto FHI, Ferreira AM, Savi MA (2005) State space reconstruction using extended state observers to control chaos in a nonlinear pendulum. Int J Bifurc Chaos 15(12):4051–4063CrossRefMATHGoogle Scholar
  28. 28.
    Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett A 170:421–428CrossRefADSGoogle Scholar
  29. 29.
    Pyragas K (2006) Delayed feedback control of chaos. Phylos Trans R Soc 364:2309–2334CrossRefMATHADSMathSciNetGoogle Scholar
  30. 30.
    Rhodes C, Morari M (1997) False-nearest-neighbors algorithm and noise-corrupted time series. Phys Rev E 55(5):6162–6170CrossRefADSGoogle Scholar
  31. 31.
    Ritz T, Schweinsberg ASZ, Dressler U, Doerner R, Hübinger B, Martienssen W (1997) Chaos control with adjustable control times. Chaos Solitons Fractals 8(9):1559–1576CrossRefADSGoogle Scholar
  32. 32.
    Savi MA (2006) Nonlinear dynamics and chaos, Editora E-papers (in portuguese)Google Scholar
  33. 33.
    Shinbrot T, Grebogi C, Ott E, Yorke JA (1993) Using small perturbations to control chaos. Nature 363:411–417CrossRefADSGoogle Scholar
  34. 34.
    So P, Ott E (1995) Controlling chaos using time delay coordinates via stabilization of periodic orbits. Phys Rev E 51(4):2955–2962CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Socolar JES, Sukow DW, Gauthier DJ (1994) Stabilizing unstable periodic orbits in fast dynamical systems. Phys Rev E 50(4):3245–3248CrossRefADSGoogle Scholar
  36. 36.
    Yanchuk S, Kapitaniak T (2001) Symmetry-increasing bifurctaion as a predictor of a chaos-hyperchaos transition in coupled systems. Phys Rev E 64(056235):1–5Google Scholar
  37. 37.
    Yanchuk S, Kapitaniak T (2001) Chaos-hyperchaos transition in coupled Rossler systems. Phys Lett A 290:139–144CrossRefMATHADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Department of Mechanical Engineering, COPPEUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations