Skip to main content
Log in

Stochastic finite element nonlinear free vibration analysis of piezoelectric functionally graded materials beam subjected to thermo-piezoelectric loadings with material uncertainties

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, second order statistics of large amplitude free flexural vibration of shear deformable functionally graded materials (FGMs) beams with surface-bonded piezoelectric layers subjected to thermopiezoelectric loadings with random material properties are studied. The material properties such as Young’s modulus, shear modulus, Poisson’s ratio and thermal expansion coefficients of FGMs and piezoelectric materials with volume fraction exponent are modeled as independent random variables. The temperature field considered is assumed to be uniform and non-uniform distribution over the plate thickness and electric field is assumed to be the transverse components E z only. The mechanical properties are assumed to be temperature dependent (TD) and temperature independent (TID). The basic formulation is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear strain kinematics. A C 0 nonlinear finite element method (FEM) based on direct iterative approach combined with mean centered first order perturbation technique (FOPT) is developed for the solution of random eigenvalue problem. Comparison studies have been carried out with those results available in the literature and Monte Carlo simulation (MCS) through normal Gaussian probability density function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Koizumi M (1997) FGM activities in Japan. Composites, Part B, Eng 28B:1–4

    Article  Google Scholar 

  2. Koizumi M (1993) The concept of FGM. In: Proceedings of the second international symposium on FGM, vol 34, pp 3–10

    Google Scholar 

  3. Birman V, Byrd LW (2007) Modeling and analysis of functionally graded materials and structures. Appl Mech Rev 60(5):195–216

    Article  ADS  Google Scholar 

  4. Talha M, Singh BN (2011) Large amplitude free flexural vibration analysis of shear deformable FGM plates using nonlinear finite element method. Finite Elem Anal Des 47(4):394–401

    Article  Google Scholar 

  5. Kapania RK, Raciti S (1989) Recent advances in analysis of laminated beams and plates, part I: shear effect and buckling. AIAA J 27(7):923–934

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Ke LL, Yang J, Kitipornchai S (2010) An analytical study on the nonlinear vibration of functionally graded beams. Meccanica 45(6):743–752

    Article  MATH  MathSciNet  Google Scholar 

  7. Shooshtari A, Rafiee M (2011) Nonlinear forced vibration analysis of clamped functionally graded beams. Acta Mech. doi:10.1007/s00707-011-0491-1

    MATH  Google Scholar 

  8. Yang J, Chen Y (2008) Free vibration and buckling analysis of functionally graded beams with edge cracks. Compos Struct 83:48–60

    Article  Google Scholar 

  9. Xiang HJ, Yang J (2008) Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Composites, Part B, Eng 39:292–303

    Article  Google Scholar 

  10. Kitipornchai S, Ke LL, Yang J, Xiang Y (2009) Nonlinear vibration of edge cracked functionally graded Timoshenko beams. J Sound Vib 324(3–5):962–982

    Article  ADS  Google Scholar 

  11. Sina SA, Navazi HM, Haddadpour H (2009) An analytical method for free vibration analysis of functionally graded beams. Mater Des 30:741–747

    Article  Google Scholar 

  12. Pradhan KK, Chakraverty S (2013) Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method, Composites Part B. Engineering 51:175–184

    Google Scholar 

  13. Vo TP, Thai HT, Nguyen TK, Inam F (2013) Static and vibration analysis of functionally graded beams using refined shear deformation theory. Meccanica 1-14. doi:10.1007/s11012-013-9780-1

  14. Aydogdu M (2005) Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method. Int J Mech Sci 47:1740–1755

    Article  MATH  Google Scholar 

  15. Simsek M (2010) Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl Eng Des 240:697–705

    Article  Google Scholar 

  16. Thai H-T, Vo PT (2012) Bending and vibration of functionally graded beam using various higher-orders shear deformation theories. Int J Mech Sci 62(1):57

    Article  Google Scholar 

  17. Wattanasakulpong N, Gangadhara Prusty B, Kelly DW (2011) Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. Int J Mech Sci 53:734–743

    Article  Google Scholar 

  18. Reddy JN (2000) Analysis of functionally graded plates. Int J Numer Methods Eng 47:663–684

    Article  MATH  Google Scholar 

  19. Huang XL, Shen HS (2006) Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. J Sound Vib 289:25–53

    Article  ADS  Google Scholar 

  20. Kapuria S, Bhattacharya M, Kumar AN (2008) Bending and free vibration response of layered functionally graded beam: a theoretical model and its experimental validation. Compos Struct 82:390–402

    Article  Google Scholar 

  21. Li S-r, Su H-d, Cheng C-j (2009) Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment. Appl Math Mech 30(8):969–982

    Article  MATH  Google Scholar 

  22. Fu Y, Jianzhe W, Yiqi M (2011) Nonlinear analysis of bucklng, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment. Appl Math Model 39(9):4324

    Google Scholar 

  23. Ying J, Lu CF, Chen WQ (2008) Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Compos Struct 84:209–219

    Article  Google Scholar 

  24. Fallah A, Aghdam MM (2011) Nonlinear free vibration and post buckling analysis of functionally graded beams on nonlinear elastic foundation. Eur J Mech A, Solids 30:571–583

    Article  MATH  Google Scholar 

  25. Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 15:1031–1051

    Article  ADS  Google Scholar 

  26. Vanmarcke E, Grigoriu M (1983) Stochastic finite element analysis of simple beams. J Eng Mech 109(5):1203–1214

    Article  Google Scholar 

  27. Kaminski M (2001) Stochastic second-order perturbation approach to the stress-based finite element method. Int J Solids Struct 38:3831–3852

    Article  MATH  Google Scholar 

  28. Locke JE (1993) Finite element large deflection random response of thermally buckled plates. J Sound Vib 160:301–312

    Article  MATH  ADS  Google Scholar 

  29. Chang TP, Chang HC (1994) Stochastic dynamic finite element analysis of a non uniform beam. Int J Solids Struct 31:587–597

    Article  MATH  Google Scholar 

  30. Navaneetha Raj B, Iyengar NGR, Yadav D (1998) Response of composite plates with random material properties using FEM and Monte Carlo simulation. Adv Compos Mater 7(19):219–237

    Article  Google Scholar 

  31. Singh BN, Yadav D, Iyengar NGR (2001) Natural frequencies of composite plates with random material properties using higher order shear deformation theory. Int J Mech Sci 43:2193–2214

    Article  MATH  Google Scholar 

  32. Singh BN, Yadav D, Iyengar NGR (2003) A C0 element for free vibration of composite plates with uncertain material properties. Adv Compos Mater 11:331–350

    Article  Google Scholar 

  33. Onkar AK, Yadav D (2005) Forced nonlinear vibration of laminated composite plates with random material properties. Compos Struct 70:334–342

    Article  Google Scholar 

  34. Kitipornchai S, Yang J, Liew KM (2006) Random vibration of functionally graded laminates in thermal environments. Comput Methods Appl Mech Eng 195:1075–1095

    Article  MATH  ADS  Google Scholar 

  35. Shaker A, Abdelrahman W, Tawfik M, Sadek E (2008) Stochastic finite element analysis of the free vibration of functionally graded material plates. Comput Mech 41:707–714

    Article  MATH  Google Scholar 

  36. Shaker A, Abdelrahman W, Tawfik M, Sadek E (2008) Stochastic finite element analysis of the free vibration of laminated composite plates. Comput Mech 41:493–501

    Article  MATH  Google Scholar 

  37. Lal A, Singh BN (2009) Stochastic nonlinear free vibration response of laminated composite plates resting on elastic foundation in thermal environments. Comput Mech 44:15–29

    Article  MATH  Google Scholar 

  38. Lal A, Singh BN, Kumar R (2007) Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties. Struct Eng Mech 27:199–222

    Article  Google Scholar 

  39. Yang J, Liew KM, Kitipornchai S (2005) Stochastic analysis of compositionally graded plates with system randomness under static loading. Int J Mech Sci 47:1519–1541

    Article  MATH  Google Scholar 

  40. Jagtap KR, Lal A, Singh BN (2011) Stochastic nonlinear free vibration analysis of elastically supported functionally graded materials plate with system randomness in thermal environment. Compos Struct 93:3185–3199

    Article  Google Scholar 

  41. Heiliger PR, Reddy JN (1988) A higher order beam finite element for bending and vibration problems. J Sound Vib 126(2):309–326

    Article  ADS  Google Scholar 

  42. Shegokar NL, Lal A (2013) Stochastic nonlinear bending response of piezoelectric functionally graded beam subjected to thermoelectromechanical loadings with random material properties. Compos Struct 100:17–33

    Article  Google Scholar 

  43. Javaheri R, Eslami MR (2002) Thermal buckling of functionally graded plates. AIAA J 40:162–169

    Article  ADS  Google Scholar 

  44. Fakhari V, Ohadi A, Yousefian P (2011) Nonlinear free and forced vibration behavior of functionally graded plate with piezoelectric layers in thermal environment. Compos Struct 93:2310–2321

    Article  Google Scholar 

  45. Lal A, Choski P, Singh BN (2012) Stochastic nonlinear free vibration analysis of piezolaminated composite conical shell panel subjected to thermoelectromechanical loading with random material properties. J Appl Mech 79:1–17

    Google Scholar 

  46. Klieber M, Hien TD (1992) The stochastic finite element method. Wiley, New York

    Google Scholar 

  47. Lal A, Jagtap KR, Singh BN (2013) Post buckling response of functionally graded materials plate subjected to mechanical and thermal loadings with random material properties. Appl Math Model 37:2900–2920

    Article  MathSciNet  Google Scholar 

  48. Nguyen TK, Vo TP, Thai HT (2013) Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory, Composites Part B. Engineering 55:147–157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achchhe Lal.

Appendix

Appendix

$$\begin{aligned} & \begin{aligned}[b] N_{0}^{T} &= \begin{bmatrix} N_{x}^{T} & M_{x}^{T} & P_{x}^{T} \end{bmatrix} \\ & = \int _{ - h/2}^{h/2} \bigl(1,z,z^{3}\bigr) (Q_{11})\alpha\Delta Tdz \end{aligned} \end{aligned}$$
(56)
$$\begin{aligned} & \begin{aligned}[b] N_{0}^{V} &= \begin{bmatrix} N_{x}^{V} & M_{x}^{V} & P_{x}^{V} \end{bmatrix} \\ &= \sum _{k = 1}^{Na} \int_{Z_{k}}^{Z_{k + 1}} \bigl(1,z,z^{3}\bigr)d_{11}\bigl(Q_{11}^{a} \bigr)\frac{V_{p}}{h_{p}}dz \end{aligned} \end{aligned}$$
(57)
$$\begin{aligned} &[ N ] = \begin{bmatrix} N_{1} & 0 \\ - C_{2}z^{3}\frac{\partial N_{3}}{\partial x} & N_{3} \\ - C_{2}z^{3}\frac{\partial N_{4}}{\partial x} & N_{4} \\ (z - C_{2}z^{3})N_{1} & 0 \\ N_{2} & 0 \\ - C_{2}z^{3}\frac{\partial N_{5}}{\partial x} & N_{5} \\ - C_{2}z^{3}\frac{\partial N_{6}}{\partial x} & N_{6} \\ (z - C_{2}z^{3})N_{2} & 0 \end{bmatrix} \end{aligned}$$
(58)
$$\begin{aligned} &[ M ] = \begin{bmatrix} pe_{1} & q_{2}e_{2} & q_{2}e_{2} & q_{1}e_{1} \\ q_{2}e_{1} & I_{2}e_{3} + pe_{4} & I_{2}e_{3} + pe_{4} & I_{3}e_{2} \\ q_{2}e_{1} & I_{2}e_{3} + pe_{4} & I_{2}e_{3} + pe_{4} & I_{3}e_{2} \\ q_{1}e_{1} & I_{3}e_{2} & I_{3}e_{2} & I_{1}e_{1} \end{bmatrix} \\ &e_{1} = \int_{0}^{l} N^{T}N dx = \begin{bmatrix} l/3 & l/6 \\ l/6 & l/3 \end{bmatrix} \\ & e_{2} = \int_{0}^{l} N^{T} \bar{N}_{x} dx = \begin{bmatrix} - 1/2 & l/12 & 1/2 & - l/12 \\ - 1/2 & - l/12 & 1/2 & l/12 \end{bmatrix} \\ & e_{3} = \int_{0}^{l} \bar {N}_{x}^{T}\bar {N}_{x} dx \\ &\phantom{e_{3}} = \begin{bmatrix} 6/5l & 1/10 & - 6/5l & 1/10 \\ 1/10 & 2l/15 & - 1/10 & - l/30 \\ - 6/5l & - 1/10 & 6/5l & - 1/10 \\ 1/10 & - l/30 & - 1/10 & 2l/15 \end{bmatrix} \\ & \begin{aligned}[t] e_{4} &= \int_{0}^{l} \bar {N}^{T}\bar {N} dx \\ &= \begin{bmatrix} 13l/35 & 11l^{2}/210 & 9l/70 & - 13l^{2}/420 \\ 11l^{2}/210 & l^{3}/105 & 13l^{2}/420 & - l^{3}/140 \\ 9l/70 & 13l^{2}/420 & 13l/35 & - 11l^{2}/210 \\ - 13l^{2}/420 & - l^{3}/140 & - 11l^{2}/210 & l^{3}/105 \end{bmatrix} \end{aligned} \\ &N = \begin{bmatrix} N_{1} & N_{2} \end{bmatrix} \qquad\bar{N}_{x} = \begin{bmatrix} N_{3} & N_{4} & N_{5} & N_{6} \end{bmatrix} \\ &( p,q_{1},q_{2},I_{1},I_{2},I_{3} ) \\ &\quad = \int_{h/2}^{ - h/2} \bigl(\rho^{c} - \rho^{m}\bigr) \bigl(1,f_{1}(z),f_{2}(z),f_{1}^{2}(z), \\ &\qquad f_{2}^{2}(z),f_{1}(z)*f_{2}(z) \bigr) dz \\ &p = h \biggl( \rho^{m} + \bigl(\rho^{c} - \rho^{m}\bigr) \biggl[ \frac{1}{n + 1} \biggr] \biggr) \\ & \begin{aligned}[t] q_{1} &= h^{2}C_{1}\bigl(\rho^{c} - \rho^{m}\bigr) \biggl[ \frac{1}{n + 2} - \frac{1}{2(n + 1)} \biggr] \\ &\quad - C_{2}h^{4}\bigl(\rho^{c} - \rho^{m} \bigr) \biggl[ \frac{1}{n + 4} - \frac{3}{2(n + 3)} \\ &\quad + \frac{3}{4(n + 2)} - \frac{1}{8(n + 1)} \biggr] \end{aligned} \\ & \begin{aligned}[b] q_{2} &= - C_{4}h^{4}\bigl(\rho^{c} - \rho^{m}\bigr) \biggl[ \frac{1}{n + 4} - \frac{3}{2(n + 3)} \\ &\quad + \frac{3}{4(n + 2)} - \frac{1}{8(n + 1)} \biggr] \end{aligned} \\ & I_{1} = C_{1}^{2}h^{3} \biggl\{ \bigl( \rho^{c} - \rho^{m}\bigr) \biggl[ \frac{1}{n + 3} - \frac{1}{n + 2} + \frac{1}{4(n + 1)} \biggr] \biggr\} \\ &\qquad + \frac {C_{1}^{2}\rho^{m}h^{3}}{12} + C_{2}^{2}h^{7} \biggl\{ \bigl( \rho^{c} - \rho^{m}\bigr) \biggl[ \frac{1}{n + 7} - \frac{3}{n + 6} \\ &\qquad + \frac{15}{4(n + 5)}- \frac{5}{2(n + 4)} + \frac{15}{16(n + 3)} \\ &\qquad - \frac{3}{16(n + 2)} + \frac{1}{64(n + 1)} \biggr] \biggr\} + \frac{C_{2}^{2}h^{7}\rho^{m}}{448} \\ &\qquad - 2C_{1}C_{2}h^{5} \biggl\{ \bigl(\rho^{c} - \rho^{m}\bigr) \biggl[ \frac{1}{n + 5} - \frac{2}{(n + 4)} \\ &\qquad + \frac{3}{2(n + 3)} - \frac{1}{2(n + 2)} + \frac {1}{16(n + 1)} \biggr] \biggr\} \\ &\qquad - \frac{C_{1}C_{2}h^{5}\rho^{m}}{40} \\ & \begin{aligned}[t] I_{2} &= - C_{2}h^{7} \biggl\{ \bigl( \rho^{c} - \rho^{m}\bigr) \biggl[ \frac{1}{n + 7} - \frac{3}{n + 6} \\ &\quad + \frac{15}{4(n + 5)} - \frac{5}{2(n + 4)} + \frac{15}{16(n + 3)}\\ &\quad - \frac{3}{16(n + 2)} + \frac{1}{64(n + 1)} \biggr] \biggr\} - \frac{C^{2}_{2}h^{7}\rho^{m}}{448} \end{aligned} \\ & \begin{aligned}[t] I_{3} &= C_{2}^{2}h^{7}\bigl( \rho^{c} - \rho^{m}\bigr) \biggl[ \frac{1}{n + 7} - \frac{3}{n + 6} + \frac{15}{4(n + 5)} \\ &\quad - \frac{5}{2(n + 4)} + \frac{15}{16(n + 3)} - \frac{3}{16(n + 2)}\\ &\quad + \frac{1}{64(n + 1)} \biggr] + \frac{C_{2}^{2}\rho^{m}h^{7}}{448} \\ &\quad - C_{1}C_{2}h^{5}\bigl( \rho^{c} - \rho^{m}\bigr) \biggl[ \frac{1}{n + 5} - \frac{2}{(n + 4)} \\ &\quad + \frac{3}{2(n + 3)} - \frac{1}{2(n + 2)} + \frac {1}{16(n + 1)} \biggr] \\ &\quad - \frac{C_{1}C_{2}h^{5}\rho^{m}}{80} \end{aligned} \end{aligned}$$
(59)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shegokar, N.L., Lal, A. Stochastic finite element nonlinear free vibration analysis of piezoelectric functionally graded materials beam subjected to thermo-piezoelectric loadings with material uncertainties. Meccanica 49, 1039–1068 (2014). https://doi.org/10.1007/s11012-013-9852-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9852-2

Keywords

Navigation