Skip to main content
Log in

Coupled refined layerwise theory for dynamic free and forced response of piezoelectric laminated composite and sandwich beams

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This work extends a previously presented coupled refined layerwise theory to dynamic analysis of piezoelectric laminated composite and sandwich beams. Contrary to most of the available theories, all the kinematic and stress boundary conditions are satisfied at the interfaces of the piezoelectric layers with the non-zero longitudinal electric field. Moreover, both electrical transverse normal strains and transverse flexibility are taken into account for the first time in the present theory.

In the presented formulation a high-order polynomial, an exponential expression and a layerwise term containing the electric field are included in the describing expression of the in-plane displacement of the beam. For the transverse displacement, the coupled refined model uses a combination of continuous piecewise fourth-order polynomials with a layerwise representation of electrical unknowns. The electric field is also approximated as linear across the thickness direction of piezoelectric layers. One of advantages of the present theory is that the mechanical number of the unknown parameters is very small and is independent of the number of the layers. For validation of the proposed model, various free and forced vibration tests for thin and thick laminated/sandwich piezoelectric beams are carried out. For various electrical and mechanical boundary conditions, excellent correlation has been found between the results obtained from the proposed formulation with those resulted from the three-dimensional theory of piezoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chopra I (2002) Review of state of art of smart structures and integrated systems. AIAA J 40(11):2145–2187

    Article  ADS  Google Scholar 

  2. Gaudenzi P (2009) Smart structures: physical behavior, mathematical modeling and applications. Wiley, New York

    Google Scholar 

  3. Benjeddou A (2000) Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput Struct 76:347–363

    Article  Google Scholar 

  4. Saravanos DA, Heyliger PR (1999) Mechanics and computational models for laminated piezoelectric beams, plates, and shells. Appl Mech Rev 52(10):305–320

    Article  ADS  Google Scholar 

  5. Crawley EF, de Luis J (1987) Use of piezoelectric actuators as element of intelligent structures. AIAA J 25:1373–1385

    Article  ADS  Google Scholar 

  6. Tzou HS, Gadre M (1989) Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls. J Sound Vib 132:433–450

    Article  ADS  Google Scholar 

  7. Wang BT, Rogers CA (1991) Laminate plate theory for spatially distributed induced strain actuators. J Compos Mater 25(4):433–452

    Google Scholar 

  8. Sung CK, Chen TF, Chen SG (1996) Piezoelectric modal sensor/actuator design for monitoring/generating flexural and torsional vibrations of cylindrical shells. J Sound Vib 118:48–55

    Google Scholar 

  9. Ray MC, Rao KM, Samanta B (1992) Exact analysis of coupled electroelastic behavior of a piezoelectric plate under cylindrical bending. Comput Struct 45(4):667–677

    Article  MATH  Google Scholar 

  10. Ray MCH, Rao KM, Samanta B (1993) Exact solution for static analysis of an intelligent structure under cylindrical bending. Comput Struct 47(6):1031–1042

    Article  MATH  Google Scholar 

  11. Heyliger PR, Brooks SB (1995) Exact free vibration of piezoelectric laminates in cylindrical bending. Int J Solids Struct 32:2945–2960

    Article  MATH  Google Scholar 

  12. Allik H, Hughes TJR (1970) Finite element method for piezoelectric vibration. Int J Numer Methods Eng 2:151–157

    Article  Google Scholar 

  13. Tzou HS, Tseng CI (1990) Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach. J Sound Vib 138(1):17–34

    Article  ADS  Google Scholar 

  14. Xu KM, Noor AK, Tang Y (1995) Three-dimensional solutions for coupled thermo-electro-elastic response of multi-layered plates. Comput Methods Appl Mech Eng 126:355–371

    Article  ADS  Google Scholar 

  15. Reddy JN (1993) An evaluation of equivalent-single-layer and layerwise theories of composite laminates. Compos Struct 25(1–4):21–35

    Article  ADS  Google Scholar 

  16. Hwang WS, Park HC (1993) Finite element modeling of piezoelectric sensors and actuators. AIAA J 31:930–937

    Article  ADS  Google Scholar 

  17. Suleman A, Venkaya VB (1995) A simple finite element formulation for a laminated composite plate with piezoelectric layers. J Intell Mater Syst Struct 6:776–782

    Article  Google Scholar 

  18. Sheikh AH, Topdar P, Halder S (2001) An appropriate FE model for through thickness variation of displacement and potential in thin/moderately thick smart laminates. Compos Struct 51:401–409

    Article  Google Scholar 

  19. Kogl M, Bucalem ML (2005) A family of piezoelectric MITC plate elements. Comput Struct 83:1277–1297

    Article  Google Scholar 

  20. Kogl M, Bucalem ML (2005) Analysis of smart laminates using piezoelectric MITC plate and shell elements. Comput Struct 83:1153–1163

    Article  Google Scholar 

  21. Chee CYK, Tong L, Steven PG (1999) A mixed model for composite beams with piezoelectric actuators and sensors. Smart Mater Struct 8:417–432

    Article  ADS  Google Scholar 

  22. Jiang JP, Li DX (2007) A new finite element model for piezothermoelastic composite beam. J Sound Vib 306:849–864

    Article  ADS  Google Scholar 

  23. Shu X (2005) Free-vibration of laminated piezoelectric composite plates based on an accurate theory. Compos Struct 67:375–382

    Article  Google Scholar 

  24. Thornburgh RP, Chattopadhyay A (2002) Simultaneous modeling of mechanical and electrical response of smart composite structures. AIAA J 40(8):1603–1610

    Article  ADS  Google Scholar 

  25. Fukunaga H, Hu N, Ren GX (2001) Finite element modeling of adaptive composite structures using a reduced higher-order plate theory via penalty functions. Int J Solids Struct 38:8735–8752

    Article  MATH  Google Scholar 

  26. Mitchell JA, Reddy JN (1995) A refined plate theory for composite laminates with piezoelectric laminate. Int J Solids Struct 32(16):2345–2367

    Article  MATH  Google Scholar 

  27. Heyliger PR, Saravanos DA (1994) Coupled discrete-layer finite elements for laminated piezoelectric plates. Commun Numer Methods Eng 10(12):971–981

    Article  MATH  Google Scholar 

  28. Saravanos DA, Heyliger PR (1995) Coupled layer-wise analysis of composite beams with embedded piezoelectric sensors and actuators. J Intell Mater Syst Struct 6:350–363

    Article  Google Scholar 

  29. Saravanos DA, Heyliger PR, Hopkins DA (1997) Layer-wise mechanics and finite element model for the dynamic analysis of piezoelectric composite plates. Int J Solids Struct 34(3):359–378

    Article  MATH  Google Scholar 

  30. Kusculuoglu ZK, Fallahi B, Royston TY (2004) Finite element model of a beam with a piezoelectric patch actuator. J Sound Vib 276:27–44

    Article  ADS  Google Scholar 

  31. Garcia Lage R, Mota Soares CM, Mota Soares CA, Reddy JN (2004) Analysis of adaptive plate structures by mixed layerwise finite elements. Compos Struct 66:269–276

    Article  Google Scholar 

  32. Garcia Lage R, Mota Soares CM, Mota Soares CA, Reddy JN (2004) Modeling of piezolaminated plates using layer-wise mixed finite element models. Comput Struct 82:1849–1863

    Article  Google Scholar 

  33. Robaldo A, Carrera E, Benjeddou A (2006) A unified formulation for finite element analysis of piezoelectric adaptive plates. Comput Struct 84:1494–1505

    Article  Google Scholar 

  34. Tzou HS, Ye R (1996) Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements. AIAA J 34:110–115

    Article  ADS  MATH  Google Scholar 

  35. Ambartsumyan SA (1969) In: Ashton, JE (ed) Theory of anisotropic plates (trans: Cheron T). Technomic, Stamford

    Google Scholar 

  36. Whitney JM (1969) The effects of transverse shear deformation on the bending of laminated plates. J Compos Mater 3:534–547

    Article  Google Scholar 

  37. Icardi U (2001) Higher-order zig-zag model for analysis of thick composite beams with inclusion of transverse normal stress and sublaminates approximations. Composites, Part B, Eng 32:343–354

    Article  Google Scholar 

  38. Icardi U (2001) A three-dimensional zig-zag theory for analysis of thick laminated beams. Compos Struct 52:123–135

    Article  Google Scholar 

  39. Reissner E (1986) On a mixed variational theorem and on a shear deformable plate theory. Int J Numer Methods Eng 23:193–198

    Article  MATH  Google Scholar 

  40. Murakami H (1984) A laminated beam theory with interlayer slip. J Appl Mech 51:551–559

    Article  MATH  Google Scholar 

  41. Murakami H (1986) Laminated composite plate theory with improved in-plane responses. J Appl Mech 53:661–666

    Article  MATH  Google Scholar 

  42. Carrera E (1999) A study of transverse normal stress effects on vibration of multilayered plates and shells. J Sound Vib 225:803–829

    Article  ADS  Google Scholar 

  43. Carrera E (2000) Single-layer vs multi-layers plate modeling on the basis of Reissner’s mixed theorem. AIAA J 38:342–343

    Article  ADS  Google Scholar 

  44. Carrera E (2003) Historical review of zig-zag theories for multilayered plates and shells. Appl Mech Rev 56:287–308

    Article  ADS  Google Scholar 

  45. Carrera E, Petrolo M (2012) Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica 47(3):537–556

    Article  MathSciNet  Google Scholar 

  46. Kapuria S (2001) An efficient coupled theory for multilayered beams with embedded piezoelectric sensory and active layers. Int J Solids Struct 38:9179–9199

    Article  MATH  Google Scholar 

  47. Kapuria S, Dumir PC, Ahmed A (2003) An efficient coupled layerwise theory for dynamic analysis of piezoelectric composite beams. J Sound Vib 261:927–944

    Article  ADS  Google Scholar 

  48. Kapuria S, Alam N (2006) Efficient layerwise finite element model for dynamic analysis of laminated piezoelectric beams. Comput Methods Appl Mech Eng 195:2742–2760

    Article  ADS  MATH  Google Scholar 

  49. Polit O, Touratier M (2000) High-order triangular sandwich plate finite element for linear and non-linear analyses. Comput Methods Appl Mech Eng 185(2–4):305–324

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Dau F, Polit O, Touratier M (2004) An efficient C1 finite element with continuity requirements for multilayered/sandwich shell structures. Comput Struct 82(23–26):1889–1899

    Article  Google Scholar 

  51. Ossadzow-David C, Touratier M (2004) A multilayered piezoelectric shell theory. Compos Sci Technol 64:2121–2137

    Article  Google Scholar 

  52. Fernandes A, Pouget J (2003) Analytical and numerical approaches to piezoelectric bimorph. Int J Solids Struct 40:4331–4352

    Article  MATH  Google Scholar 

  53. Vidal P, Polit O (2008) A family of sinus finite elements for the analysis of rectangular laminated beams. Compos Struct 84:56–72

    Article  Google Scholar 

  54. Beheshti-Aval SB, Lezgy-Nazargah M (2010) A finite element model for composite beams with piezoelectric layers using a sinus model. J Mech 26(2):249–258

    Article  Google Scholar 

  55. Beheshti-Aval SB, Lezgy-Nazargah M (2010) Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams. Smart Struct Syst 6(8):921–938

    Google Scholar 

  56. Beheshti-Aval SB, Lezgy-Nazargah M, Vidal P, Polit O (2011) A refined sinus finite element model for the analysis of piezoelectric laminated beams. J Intell Mater Syst Struct 22:203–219

    Article  Google Scholar 

  57. Li X, Liu D (1997) Generalized laminate theories based on double superposition hypothesis. Int J Numer Methods Eng 40(7):1197–1212

    Article  MATH  Google Scholar 

  58. Shariyat M (2012) A general nonlinear global-local theory for bending and buckling analyses of imperfect cylindrical laminated and sandwich shells under thermomechanical loads. Meccanica 47(2):301–319

    Article  MathSciNet  Google Scholar 

  59. Lezgy-Nazargah M, Beheshti-Aval SB, Shariyat M (2011) A refined mixed global-local finite element model for bending analysis of multi-layered rectangular composite beams with small widths. Thin-Walled Struct 49:351–362

    Article  Google Scholar 

  60. Lezgy-Nazargah M, Shariyat M, Beheshti-Aval SB (2011) A refined high-order global-local theory for finite element bending and vibration analyses of the laminated composite beams. Acta Mech 217(3–4):219–242

    Article  MATH  Google Scholar 

  61. Zhen W, Wanji C (2007) Refined triangular element for laminated elastic-piezoelectric plates. Compos Struct 78:129–139

    Article  Google Scholar 

  62. Beheshti-Aval SB, Lezgy-Nazargah M (2012) A coupled refined high-order global-local theory and finite element model for static electromechanical response of smart multilayered/sandwich beams. Arch Appl Mech. doi:10.1007/s00419-012-0621-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Beheshti-Aval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beheshti-Aval, S.B., Lezgy-Nazargah, M. Coupled refined layerwise theory for dynamic free and forced response of piezoelectric laminated composite and sandwich beams. Meccanica 48, 1479–1500 (2013). https://doi.org/10.1007/s11012-012-9679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9679-2

Keywords

Navigation