Advertisement

Meccanica

, Volume 48, Issue 4, pp 875–886 | Cite as

Approximate solution of non-Newtonian viscoelastic fluid flow on a turbine disc for cooling purposes by using Adomian decomposition method

  • G. Domairry
  • Z. Ziabakhsh
  • H. Doumiri Ganji
  • Modil Habibi
Article
  • 237 Downloads

Abstract

In this work, a powerful semi-analytical method, called Adomian decomposition method (ADM) is introduced to obtain the exact solution of heat transfer equation of a non-Newtonian fluid flow in an axisymmetric channel with a porous wall which is useful for turbine cooling applications. This method is employed to obtain the expressions for velocity and temperature fields. Then, the influence of the two dimensionless numbers: the Prandtl number (Pr) and the Reynolds number (Re) for the dynamic forces have been considered. Comparisons are made between the numerical method (NM) solution, Homotopy perturbation method (HPM), Variation iteration method (VIM) and the results of Adomian decomposition method (ADM). The results reveal that this method is very effective and simple and can be applied for other nonlinear problems.

Keywords

Adomian decomposition method (ADM) Numerical method (NM) Viscoelastic fluid Non-Newtonian fluid Heat transfer 

Nomenclature

ADM

Adomian decomposition method

VIM

Variational iteration method

NM

Numerical method

HPM

Homotopy perturbation method

P

Pressure

q

Rate of heat transfer

\(\operatorname{Re}\)

Reynolds number

u

Dimensionless velocity

\(\operatorname{Pr}\)

Prandtl number

k

Thermal conductivity

T

Temperature

C

Specific heat

L

Linear parameter

N

Nonlinear parameter

Greek symbols

ρ

Fluid density

υ

Kinematic viscosity

τ

Stress matrix

Φ

Dissipation function

References

  1. 1.
    Rivlin RS, Ericksen JL (1995) Stress-deformation relations for isotropic materials. J Ration Mech Anal 4:323–425 MathSciNetGoogle Scholar
  2. 2.
    Yuan SW, Finkelstein AB (1956) Laminar pipe flow with injection and suction through a porous wall. Trans Am Soc Mech Eng 78:719–724 Google Scholar
  3. 3.
    White JL, Metzner AB (1965) Constitutive equations for viscoelastic fluids with application to rapid external flows. AIChE J 11(2):324–330 CrossRefGoogle Scholar
  4. 4.
    Terill RM (1965) Laminar flow in a uniformly porous channel with large injection. Aeronaut Q 16:322–332 Google Scholar
  5. 5.
    Debruge LL, Han LL (1972) Heat transfer in a channel with porous wall for turbine cooling application. J Heat Transf 94:385–390 CrossRefGoogle Scholar
  6. 6.
    Shin S, Ahn HH, Cho YI, Sohn CH (1999) Heat transfer behavior of a temperature dependent non-Newtonian fluid with Reiner–Rivlin model in a 2:1 rectangular duct. Int J Heat Mass Transf 42:2935–2942 MATHCrossRefGoogle Scholar
  7. 7.
    Akcay M, Yukselen A (1999) Drag reduction of a non-Newtonian fluid by fluid injection on a moving wall. Arch Appl Mech 69:215–225 ADSMATHCrossRefGoogle Scholar
  8. 8.
    Kurtcebe C, Erim MZ (2002) Heat transfer of a non-Newtonian viscoinelastic fluid in an axisymmetric channel with a porous wall for turbine cooling application. Int Commun Heat Mass Transf 29(7):971–982 CrossRefGoogle Scholar
  9. 9.
    Nayfeh, AH (2000) Perturbation methods. Wiley, New York MATHCrossRefGoogle Scholar
  10. 10.
    He JH (2006) Some asymptotic methods for strongly nonlinear equations. Int J Mod Phys B 20(10):1141–1199 ADSMATHCrossRefGoogle Scholar
  11. 11.
    He JH (2001) Bookkeeping parameter in perturbation methods. Int J Nonlinear Sci Numer Simul 2(3):257–264 MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    He JH (2000) A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int J Non-Linear Mech 35(1):37–43 MATHCrossRefGoogle Scholar
  13. 13.
    Ganji ZZ, Ganji DD (2008) Approximate solutions of thermal boundary-layer problems in a semi-infinite flat plate by using he’s homotopy perturbation method. Int J Nonlinear Sci Numer Simul 9(4):415–422 CrossRefGoogle Scholar
  14. 14.
    Liao SJ (1992) Proposed homotopy analysis techniques for the solution of nonlinear problems. PhD thesis, Shanghai Jiao Tong University Google Scholar
  15. 15.
    Liao SJ (2004) on the homotopy analysis method for nonlinear problems. Appl Math Comput 47(2):499–513 CrossRefGoogle Scholar
  16. 16.
    Hayat T, Sajid M, Ayub M (2008) On explicit analytic solution for MHD pipe flow of a fourth grade fluid. Commun Nonlinear Sci Numer Simul 13(4):745–751 MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Ziabakhsh Z, Domairry G (2009) Solution of the laminar viscous flow in a semi-porous channel in the presence of a uniform magnetic field by using the homotopy analysis method. Commun Nonlinear Sci Numer Simul 14(4):1284–1294 ADSCrossRefGoogle Scholar
  18. 18.
    Ziabakhsh Z, Domairry G, Ghazizadeh HR (2009) Analytical solution of the stagnation-point flow in a porous medium by using the homotopy analysis method. J Taiwan Inst Chem Eng 40(1):91–97 CrossRefGoogle Scholar
  19. 19.
    He JH (1999) Variational iteration method—a kind of non-linear analytical technique: some examples. Int J Non-Linear Mech 34(4):699–708 MATHCrossRefGoogle Scholar
  20. 20.
    Dehghan M, Shakeri F (2010) Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration technique. Int J Numer Methods Biomed Eng 26:705–715 MathSciNetMATHGoogle Scholar
  21. 21.
    He JH, Zhang L-N (2008) Generalized solitary solution and compacton-like solution of the Jaulent–Miodek equations using the Exp-function method. Phys Lett A 372(7):1044–1047 MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    He JH, Abdou MA (2007) New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos Solitons Fractals 34(5):1421–1429 MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Adomian G (1988) A review of the decomposition method in applied mathematics. J Math Anal Appl 135(2):501–544 MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Adomian G (1992) A review of the decomposition method and some recent results for nonlinear equations. Math Comput Model 13(7):17–43 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Jafari H, Daftardar-Gejji V (2006) Revised Adomian decomposition method for solving a system of nonlinear equations. Appl Math Comput 175(1):1–7 MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Ghosh S, Roy A, Roy D (2007) An adaptation of Adomian decomposition for numeric–analytic integration of strongly nonlinear and chaotic oscillators. Comput Methods Appl Mech Eng 196(4–6):1133–1153 MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Bulut H, Ergut M, Asil V, Bokor RH (2004) Numerical solution of a viscous incompressible flow problem through an orifice by Adomian decomposition method. Appl Math Comput 153(3):733–741 MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Allan FM, Syam MI (2005) On the analytic solutions of the non-homogeneous Blasius problem. J Comput Appl Math 182(2):362–371 MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Wang L (2004) A new algorithm for solving classical Blasius equation. Appl Math Comput 157(1):1–9 MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Hashim I (2006) Adomian decomposition method for solving BVPs for fourth-order integro-differential equations. J Comput Appl Math 193(2):658–664 MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Soh CW (2006) Non-perturbative semi-analytical source-type solutions of thin-film equation. Appl Math Comput 174(2):1576–1585 MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Ganji ZZ, Ganji DD (2010) Analytical solution of viscous flow in porous media using ADM and comparison with the numerical Runge-Kutta method. Transp Porous Media 81(3):527–546 CrossRefGoogle Scholar
  33. 33.
    Dehghan M, Hamidi A, Shakourifar M (2007) The solution of coupled Burgers’ equations using Adomian-Pade technique. Appl Math Comput 189(2):1034–1047 MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Dehghan M, Shakourifar M, Hamidi A (2009) The solution of linear and nonlinear systems of Volterra functional equations using Adomian-Pade technique. Chaos Solitons Fractals 39(5):2509–2521 MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • G. Domairry
    • 1
  • Z. Ziabakhsh
    • 1
  • H. Doumiri Ganji
    • 2
  • Modil Habibi
    • 1
  1. 1.Department of Mechanical EngineeringBabol University of TechnologyBabolIran
  2. 2.Young Researchers club, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations