, Volume 47, Issue 8, pp 2005–2011 | Cite as

On the final boundary value problems in linear thermoelasticity

  • Stan Chiriţă


In the present study we derive some uniqueness criteria for solutions of the Cauchy problem for the standard equations of dynamical linear thermoelasticity backward in time. We use Lagrange-Brun identities combined with some differential inequalities in order to show that the final boundary value problem associated with the linear thermoelasticity backward in time has at most one solution in appropriate classes of displacement-temperature fields. The uniqueness results are obtained under the assumptions that the density mass and the specific heat are strictly positive and the conductivity tensor is positive definite.


Linear thermoelasticity backward in time Uniqueness results Lagrange-Brun identity method 


  1. 1.
    Brun L (1965) Sur l’unicité en thermoelasticité dynamique et diverses expressions analogues à la formule de Clapeyron. C R Acad Sci Paris 261:2584–2587 MathSciNetGoogle Scholar
  2. 2.
    Brun L (1969) Méthodes énergétiques dans les systèmes évolutifs linéaires, Première partie : Separation des énergies, Deuxième partie : Théorèmes d’unicité. J Méc 8:125–166. 167–192 MathSciNetMATHGoogle Scholar
  3. 3.
    Knops RJ, Payne LE (1970) On uniqueness and continuous data dependence in dynamical problems of linear thermoelasticity. Int J Solids Struct 6:1173–1184 MATHCrossRefGoogle Scholar
  4. 4.
    Levine HA (1970) On a theorem of Knops and Payne in dynamical thermoelasticity. Arch Ration Mech Anal 38:290–307 MATHCrossRefGoogle Scholar
  5. 5.
    Wilkes NS (1980) Continuous dependence and instability in linear thermoelasticity. SIAM J Appl Math 11:292–299 MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Rionero S, Chiriţă S (1987) The Lagrange identity method in linear thermoelasticity. Int J Eng Sci 25:935–947 MATHCrossRefGoogle Scholar
  7. 7.
    Ieşan D (1989) On some theorems in thermoelastodynamics. Rev Roum Sci Tech, Sér Méc Appl 34:101–111 MATHGoogle Scholar
  8. 8.
    Ieşan D (1989) Reciprocity, uniqueness and minimum principles in the dynamic theory of thermoelasticity. J Therm Stresses 12:465–482 CrossRefGoogle Scholar
  9. 9.
    Ames KA, Payne LE (1991) Stabilizing solutions of the equations of dynamical linear thermoelasticity backward in time. Stab Appl Anal Contin Media 1:243–260 MathSciNetGoogle Scholar
  10. 10.
    Ciarletta M, Chiriţă S (2001) Spatial behavior in linear thermoelasticity backward in time. In: Chao CK, Lin CY (eds) Proceedings of the fourth international congress on thermal stresses, Osaka, Japan, pp 485–488 Google Scholar
  11. 11.
    Ciarletta M, Chiriţă S (2002) Asymptotic partition in the linear thermoelasticity backward in time. In: Mathematical models and methods for smart materials, Cortona, 2001. Series on advances in mathematics for applied sciences, vol 62. World Scientific, River Edge, pp 31–41 CrossRefGoogle Scholar
  12. 12.
    Ciarletta M (2002) On the uniqueness and continuous dependence of solutions in dynamical thermoelasticity backward in time. J Therm Stresses 25:969–984 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Iovane G, Passarella F (2004) Spatial behaviour in dynamical thermoelasticity backward in time for porous media. J Therm Stresses 27:97–109 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Passarella F, Tibullo V (2010) Some results in linear theory of thermoelasticity backward in time for microstretch materials. J Therm Stresses 33:559–576 CrossRefGoogle Scholar
  15. 15.
    Koch H, Lasiecka I (2007) Backward uniqueness in linear thermoelasticity with time and space variable coefficients. In: Functional analysis and evolution equations: Gunter Lumer volume. Birkhäuser, Basel, pp 389–403 Google Scholar
  16. 16.
    Ames KA, Payne LE (1998) Asymptotic behavior for two regularizations of the Cauchy problem for the backward heat equation. Math Models Methods Appl Sci 8:187–202 MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Ames KA, Payne LE, Schaefer PW (2004) On a nonstandard problem for heat conduction in a cylinder. Appl Anal 83:125–133 MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Ames KA, Payne LE, Schaefer PW (2004) Energy and pointwise bounds in some nonstandard parabolic problems. Proc R Soc Edinb A 134:1–9 MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Ames KA, Payne LE, Song JC (2005) On two classes of nonstandard parabolic problems. J Math Anal Appl 311:254–267 MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Song JC (2001) Spatial decay for solutions of Cauchy problems for perturbed heat equations. Math Models Methods Appl Sci 11:797–808 MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Payne LE, Schaefer PW, Song JC (2004) Improved bounds for some nonstandard problems in generalized heat conduction. J Math Anal Appl 298:325–340 MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Payne LE, Schaefer PW, Song JC (2004) Some nonstandard problems in viscous flow. Math Methods Appl Sci 27:2045–2053 MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Quintanilla R, Straughan B (2005) Bounds for some nonstandard problems in porous viscous flow and viscous Green–Naghdi fluids. Proc R Soc Lond A 461:3159–3168 MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Chiriţă S (2009) On some non-standard problems in linear thermoelasticity. J Therm Stresses 32:1256–1269 CrossRefGoogle Scholar
  25. 25.
    Chiriţă S, Ciarletta M (2010) Spatial behavior for some non-standard problems in linear thermoelasticity without energy dissipation. J Math Anal Appl 367:58–68 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Mathematics“Al. I. Cuza” University of IaşiIaşiRomania
  2. 2.“Octav Mayer” Mathematics InstituteRomanian Academy of Science, Iaşi BranchIaşiRomania

Personalised recommendations