Skip to main content
Log in

Closed form integration of a hyperelliptic, odd powers, undamped oscillator

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A known one-dimensional, undamped, anharmonic, unforced oscillator whose restoring force is a displacement’s odd polynomial function, is exactly solved via the Gauss and Appell hypergeometric functions, revealing a new fully integrable nonlinear system. Our t=t(x) equation—and its correspondent x=x(t) obtained via the Lagrange reversion approach—can then added to the (not rich) collection of highly nonlinear oscillating systems integrable in closed form. Finally, the hypergeometric formula linking the period T to the initial motion amplitude a is then assumed as a benchmark for ranking the approximate values of the relevant literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostinelli C, Pignedoli A (1978) Meccanica razionale, vol 1. Zanichelli, Bologna

    Google Scholar 

  2. Appell P (1880) Sur les series hypergeometriques de deux variables, et sur des equations differentielles lineaires aux derives partielles. CR Acad Sci Paris 90:296–298

    Google Scholar 

  3. Atkinson CP (1962) On the superposition method for determining frequencies of nonlinear systems. In: ASME proceedings of the 4th national congress of applied mechanics, pp 57–62

    Google Scholar 

  4. Burton TD, Hamdan MH (1983) Analysis of nonlinear autonomous conservative oscillators by a time transformation method. J Sound Vib 87(4):543–554

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Citterio M, Talamo R (2006) On a Korteweg-de Vries-like equation with higher degree of non-linearity. Int J Non-Linear Mech 41(10):1235–1241

    Article  MathSciNet  MATH  Google Scholar 

  6. Citterio M, Talamo R (2009) The elliptic core of nonlinear oscillators. Meccanica 44:653–660

    Article  MathSciNet  Google Scholar 

  7. Gauss KF (1812) Disquisitiones generales circa seriem infinitam. Commun Soc Regia Sci Göttingen Rec, 2

  8. Lagrange JL (1770) Nouvelle méthode pour résoudre les équations littérales par le moyen des séries. Mém Acad R Sci Belles-Lett Berlin 24: 251–326

    Google Scholar 

  9. Ke L-L, Yang J, Kitipornchai S (2010) An analytical study on the nonlinear vibration of functionally graded beams. Meccanica 45:743–752

    Article  MathSciNet  Google Scholar 

  10. Mingari Scarpello G, Ritelli D (2004) Higher order approximation of the period-energy function for single degree of freedom hamiltonian systems. Meccanica 39:357–364

    Article  MathSciNet  MATH  Google Scholar 

  11. Mingari Scarpello G, Ritelli D (2009) The hyperelliptic integrals and π. J Number Theory 129:3094–3108

    Article  MathSciNet  MATH  Google Scholar 

  12. Pirbodaghi T, Hoseini SH, Ahmadian MT, Farrahi GH (2009) Duffing equations with cubic and quintic nonlinearities. Comput Math Appl 57:500–506

    Article  MathSciNet  MATH  Google Scholar 

  13. Recktenwald G, Rand R (2007) Trigonometric simplification of a class of conservative nonlinear oscillators. Nonlinear Dyn 49:193–201

    Article  MathSciNet  MATH  Google Scholar 

  14. Roy L (1945) Cours de Mècanique Rationelle, vol I. Gauthier-Villars, Paris

    Google Scholar 

  15. Sinha SC, Srinivasan P (1971) Application of ultraspherical polynomials to non-linear autonomous systems. J Sound Vib 18:55–60

    Article  ADS  MATH  Google Scholar 

  16. Slater LJ (1966) Generalized hypergeometric functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Yildirim A (2010) Determination of periodic solutions for nonlinear oscillators with fractional powers by He’s modified Lindstedt-Poincaré method. Meccanica 45:1–6

    Article  MathSciNet  MATH  Google Scholar 

  18. Whittaker ET, Watson GN (1962) A course of modern analysis, 4th edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Ritelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mingari Scarpello, G., Ritelli, D. Closed form integration of a hyperelliptic, odd powers, undamped oscillator. Meccanica 47, 857–862 (2012). https://doi.org/10.1007/s11012-011-9455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-011-9455-8

Keywords

Navigation