, Volume 47, Issue 1, pp 163–173 | Cite as

Phenomenological method for fracture

  • H. Wang
  • L. Li
  • S. Liu


Ductile fracture using meshless Galerkin method is studied. We use well-known Gurson-Tvergaard-Needleman (GTN) in combination with visibility method. The GTN model is used in the bulk and when certain damage threshold is reached, discrete crack is introduced by taking advantage of the visibility method. The visibility criterion that modifies the particle connectivity based on evolving crack surface morphology is used. We demonstrate the applicability of meshless method to ductile fracture for several problems.


Fracture Mechanics Meshless 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zahoor A (1991) Ductile fracture handbook, vol. 3. Novotech Google Scholar
  2. 2.
    Bazant ZP (2001) Scaling of failure of beams, frames and plates with softening hinges. Meccanica 36:67–77 CrossRefMATHGoogle Scholar
  3. 3.
    Krivtsov AM (2003) Molecular dynamics simulation of impact fracture in polycrystalline materials. Meccanica 38:61–70 CrossRefMATHGoogle Scholar
  4. 4.
    Hawthorne HM, Xie Y (2001) An attempt to evaluate cohesion in wc/co/cr coatings by controlled scratching. Meccanica 36:675–682 CrossRefGoogle Scholar
  5. 5.
    Mc Clintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35:363–371 CrossRefGoogle Scholar
  6. 6.
    Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217 CrossRefADSGoogle Scholar
  7. 7.
    Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: Part l. Yield criteria and flow rules for porous ductile media. ASME J Eng Mater Technol 99 Google Scholar
  8. 8.
    Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain condition. Int J Fract Mech 17:389–407 CrossRefGoogle Scholar
  9. 9.
    Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fract Mech 18:237–252 Google Scholar
  10. 10.
    Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169 CrossRefGoogle Scholar
  11. 11.
    Pardoen T, Hutchinson JW (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48:2467–2512 CrossRefMATHADSGoogle Scholar
  12. 12.
    Roychowdhury S, Roy YDA, Dodds RH Jr (2002) Ductile tearing in thin aluminum panels: experiments and analysis using large displacement, 3-d surface cohesive elements. Int J Solids Struct 69:983–1002 Google Scholar
  13. 13.
    Besson J, Steglich D, Brocks W (2001) Modelling of crack growth in round bars and plane strain specimens. Int J Solids Struct 38:8259–8284 CrossRefMATHGoogle Scholar
  14. 14.
    Xia L, Shih F, Hutchinson JW (1995) A computational approach to ductile crack growth under large scale yielding conditions. J Mech Phys Solids 43:389–413 CrossRefMATHADSGoogle Scholar
  15. 15.
    Kikuchi M (2006) Dimple fracture simulation of fracture specimen under different constraint conditions. Comput Model Eng Sci 11:49–59 Google Scholar
  16. 16.
    Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (mlpg) approach in computational mechanics. Comput Mech 22:117–127 CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Atluri SN, Zhu T (2000) The meshless local Petrov-Galerkin (mlpg) approach for solving problems in elasto-statics. Comput Mech 25:169–179 CrossRefMATHGoogle Scholar
  18. 18.
    Le Phong BE, Rabczuk T, Nam M-D, Tran-Cong T (2010) A moving local irbfn based Galerkin meshless method. Comput Model Eng Sci 66:25–52 MATHGoogle Scholar
  19. 19.
    Atluri SN (2002) The meshless local Petrov-Galerkin (MLPG) method. Tech Science Press, Duluth MATHGoogle Scholar
  20. 20.
    Akbari A, Bagri R, Bordas SPA, Rabczuk T (2010) Analysis of thermoelastic waves in a twodimensional functionally graded materials domain by the meshless local Petrov Galerkin (mlpg) method. Comput Model Eng Sci 65:27–74 MATHGoogle Scholar
  21. 21.
    Onate E, Idelson S, Zienkievicz O, Taylor RL (1996) A finite point method in computational mechanics: Applications to convective transport and fluid flow. Int J Numer Methods Eng 39:3839–3866 CrossRefMATHGoogle Scholar
  22. 22.
    Rabczuk T, Eibl J (2003) Simulation of high velocity concrete fragmentation using sph/mlsph. Int J Numer Methods Eng 56:1421–1444 CrossRefMATHGoogle Scholar
  23. 23.
    Rabczuk T, Eibl J, Stempniewski L (2004) Numerical analysis of high speed concrete fragmentation using a meshfree Lagrangian method. Eng Fract Mech 71(4–6):547–556 CrossRefGoogle Scholar
  24. 24.
    Rabczuk T, Eibl J (2006) Modelling dynamic failure of concrete with meshfree methods. Int J Impact Eng 32(11):1878–1897 CrossRefGoogle Scholar
  25. 25.
    Rabczuk T, Belytschko T (2006) Application of particle methods to static fracture of reinforced concrete structures. Int J Fract 137(1–4):19–49 CrossRefMATHGoogle Scholar
  26. 26.
    Monaghan JJ (1994) Simulating free surface flows with sph. J Comput Phys 110:399–406 CrossRefMATHADSGoogle Scholar
  27. 27.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256 CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Li S, Simonson BC (2003) Meshfree simulation of ductile crack propagation. Int J Comput Methods Eng Sci Mech 6:1–19 CrossRefMATHGoogle Scholar
  29. 29.
    Le Phong BE, Rabczuk T, Nam M-D, Tran-Cong T (2010) A moving irbfn based integration-free meshless method. Comput Model Eng Sci 61:63–109 MATHGoogle Scholar
  30. 30.
    Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116:123–134 CrossRefMATHADSMathSciNetGoogle Scholar
  31. 31.
    Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid-structure interaction by sph. Comput Struct 85(11–14):879–890 CrossRefGoogle Scholar
  32. 32.
    Vavourakis V, Polyzos D (2007) A mlpg4 (lbie) formulation in elastostatics. Comput Mater Continua 5(3):185–196 MATHMathSciNetGoogle Scholar
  33. 33.
    Randles PW, Libersky L (2000) Normalized sph with stress points. Int J Numer Methods Eng 48:1445–1461 CrossRefMATHGoogle Scholar
  34. 34.
    Belytschko T, Lu YY (1995) Element-free Galerkin methods for static and dynamic fracture. Int J Solids Struct 32:2547–2570 CrossRefMATHGoogle Scholar
  35. 35.
    Belytschko T, Tabbara M (1996) Dynamic fracture using element-free Galerkin methods. Int J Numer Methods Eng 39(6):923–938 CrossRefMATHGoogle Scholar
  36. 36.
    Bordas S, Rabczuk T, Nguyen-Xuan H, Natarajan S, Bog T, Phu NV, Minh QD, Vinh HN (2010) Strain smoothing in fem and xfem. Comput Struct 88:1419–1443 CrossRefGoogle Scholar
  37. 37.
    Rabczuk T, Belytschko T (2004) Cracking particles: A simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343 CrossRefMATHGoogle Scholar
  38. 38.
    Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39(6):743–760 CrossRefMATHGoogle Scholar
  39. 39.
    Ventura G, Xu J, Belytschko T (2002) A vector level set method and new discontinuity approximation for crack growth by efg. Int J Numer Methods Eng 54(6):923–944 CrossRefMATHGoogle Scholar
  40. 40.
    Zi G, Rabczuk T, Wall W (2007) Extended meshfree methods without branch enrichment for cohesive cracks. Comput Mech 40(2):367–382 CrossRefMATHGoogle Scholar
  41. 41.
    Hildebrand G (2009) Fracture analysis using an enriched meshless method. Meccanica 44:535–545 CrossRefMathSciNetGoogle Scholar
  42. 42.
    Rabczuk T, Areias PMA (2006) A new approach for modelling slip lines in geological materials with cohesive models. Int J Numer Anal Methods Geomech 30(11):1159–1172 CrossRefMATHGoogle Scholar
  43. 43.
    Fatemi J, Van Keulen F, Onck PR (2002) Generalized continuum theories: Application to stress analysis in bone. Meccanica 37:385–396 CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Rabczuk T, Zi G, Gerstenberger A, Wall WA (2008) A new crack tip element for the phantom node method with arbitrary cohesive cracks. Int J Numer Methods Eng 75:577–599 CrossRefMATHGoogle Scholar
  45. 45.
    Taylor M, Cotton J, Zioupos P (2002) Finite element simulation of the fatigue behaviour of cancellous bone. Meccanica 37:419–429 CrossRefMATHGoogle Scholar
  46. 46.
    Rabczuk T, Song J-H, Belytschko T (2009) Simulations of instability in dynamic fracture by the cracking particles method. Eng Fract Mech 76:730–741 CrossRefGoogle Scholar
  47. 47.
    Ramtani S, Zidi M (2002) Damage-bone remodelling theory: An extension to anisotropic damage. Meccanica 37:355–363 CrossRefMATHGoogle Scholar
  48. 48.
    Doblare M, Garcia JM, Cegonino J (2002) Development of an internal bone remodelling theory and applications to some problems in orthopaedic biomechanics. Meccanica 37:365–374 CrossRefMATHGoogle Scholar
  49. 49.
    Rabczuk T, Belytschko T (2007) A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196:2777–2799 CrossRefMATHADSMathSciNetGoogle Scholar
  50. 50.
    Rabczuk T, Bordas S, Zi G (2007) A three dimensional meshfree method for static and dynamic multiple crack nucleation/propagation with crack path continuity. Comput Mech 40(3):473–495 CrossRefMATHGoogle Scholar
  51. 51.
    Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2008) A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures. Eng Fract Mech 75:4740–4758 CrossRefGoogle Scholar
  52. 52.
    Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199:2437–2455 CrossRefADSMATHGoogle Scholar
  53. 53.
    Rabczuk T, Bordas S, Zi G (2010) On three-dimensional modelling of crack growth using partition of unity methods. Comput Struct 88:1391–1411 CrossRefGoogle Scholar
  54. 54.
    Rabczuk T, Areias PMA, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 72(5):524–548 CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Rabczuk T, Areias P (2006) A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Comput Model Eng Sci 16(2):115–130 Google Scholar
  56. 56.
    Rabczuk T, Gracie R, Song J-H, Belytschko T (2010) Immersed particle method for fluid-structure interaction. Int J Numer Methods Eng 81:48–71 MATHMathSciNetGoogle Scholar
  57. 57.
    Liu WK, Hao S, Belytschko T (1999) Multiple scale meshfree methods for damage fracture and localization. Comput Mater Sci 16(1–4):197–205 CrossRefGoogle Scholar
  58. 58.
    Hao S, Liu WK, Chang CT (2000) Computer implementation of damage models by finite element and meshfree methods. Comput Methods Appl Mech Eng 187(3–4):401–440 CrossRefMATHADSGoogle Scholar
  59. 59.
    Hao S, Liu WK, Qian D (2000) Localization-induced band and cohesive model. J Appl Mech 67(4):803–812 CrossRefMATHGoogle Scholar
  60. 60.
    Aquaro D (2006) Erosion due to the impact of solid particles of materials resistant at high temperature. Meccanica 41:539–551 CrossRefMATHGoogle Scholar
  61. 61.
    Rabczuk T, Samaniego E (2008) Discontinuous modelling of shear bands using adaptive meshfree methods. Comput Methods Appl Mech Eng 197:641–658 CrossRefMATHMathSciNetADSGoogle Scholar
  62. 62.
    Rabczuk T, Areias PMA, Belytschko T (2007) A simplified mesh-free method for shear bands with cohesive surfaces. Int J Numer Methods Eng 69(5):993–1021 CrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    Batra RC, Lear M (2004) Simulation of brittle and ductile fracture in an impact loaded prenotched plate. Int J Fract 126:179–203 CrossRefMATHGoogle Scholar
  64. 64.
    Batra RC, Ravisankar M (2000) Three-dimensional numerical simulation of the Kalthoff experiment. Int J Fract 105:161–186 CrossRefGoogle Scholar
  65. 65.
    Batra RC, Nechitalio N (1997) Analysis of failure modes in impulsively loaded pre-notched plates. Int J Plast 11:291–308 CrossRefGoogle Scholar
  66. 66.
    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: An overview and recent developments. Comput Methods Appl Mech Eng 139:3–47 CrossRefMATHADSGoogle Scholar
  67. 67.
    Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: A review and computer implementation aspects. Math Comput Simul 79:763–813 CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 20:1081–1106 CrossRefMATHMathSciNetGoogle Scholar
  69. 69.
    Chen J-S, Wu C-T, Yoon S, You YS (2001) A stabilized conforming nodal integration for Galerkin mesh-free method. Int J Numer Methods Eng 50:435–466 CrossRefMATHGoogle Scholar
  70. 70.
    You Y, Chen JS, Voth TE (2002) Characteristics of semi- and full discretization of stabilized Galerkin meshfree method. Finite Elem Anal Des 38:999–1012 CrossRefMATHMathSciNetGoogle Scholar
  71. 71.
    Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193:1035–1063 CrossRefMATHADSMathSciNetGoogle Scholar
  72. 72.
    Tvergaard V (1990) Material failure by void growth to coalescence. Adv Appl Mech 27:83–151 CrossRefMATHGoogle Scholar
  73. 73.
    Needleman A, Tvergaard V (1987) An analysis of ductile rupture modes at a crack tip. J Mech Phys Solids 35:151–183 CrossRefMATHADSGoogle Scholar
  74. 74.
    Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102:249–256 CrossRefGoogle Scholar
  75. 75.
    Joyce JA, Hacket EM (1994) Development of an engineering definition of the extent of j-controlled crack growth. In: Blaut JG, Schwalbe KH (eds) Defect assessment of components-fundamentals and application, ESIS/EGF9. Mechanical Engineering Publications, London, pp 233–249 Google Scholar
  76. 76.
    Joyce JA, Link RE (1994) Effects of constraint on upper shelf fracture toughness. In: Newman JC Jr, Reuter WG, Underwood JH (eds) Fracture mechanics, ASTM STP 1256, vol 26. American Society for Testing Materials Google Scholar
  77. 77.
    Xia L, Shih F (1995) Ductile crack growth-I. A numerical study using computational cells with microstructurally-based length scales. J Mech Phys Solids 43:233–259 CrossRefMATHADSGoogle Scholar
  78. 78.
    Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2d and 3d. Int J Numer Methods Eng 63(11):1559–1582 CrossRefMATHMathSciNetGoogle Scholar
  79. 79.
    Gunther FC, Liu WK (1998) Implementation of boundary conditions for meshless methods. Comput Methods Appl Mech Eng 163:205–230 CrossRefADSMathSciNetGoogle Scholar
  80. 80.
    Oh C, Kima Y-J, Baekb J-H, Kimb Y-P, Kim W (2007) A phenomenological model of ductile fracture for api x65 steel. Int J Mech Sci 49:1399–1412 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Engineering MechanicsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations