Advertisement

Meccanica

, Volume 46, Issue 5, pp 1145–1158 | Cite as

Meshfree modelling of fracture—a comparative study of different methods

  • S. Rajagopal
  • N. Gupta
Article

Abstract

Different fracture methods in meshfree methods are studied and compared. Our studies focuses on the elementfree Galerkin (EFG) method though similar results were obtained with SPH and MPM. Three major fracture approaches are tested: Natural fracture, smeared crack method and discrete crack method. In the latter method, the crack is represented as continuous line and as set of discrete crack segment. Natural fracture is a key feature of meshfree methods. In some numerical examples, we will show that natural fracture criterion cannot handle even simple fracture adequately. Moreover, we will show in our numerical examples that smeared crack models can capture global behavior appropriately for simple examples but not for complex examples involving branching cracks. The most accurate methods are discrete fracture methods.

Keywords

Fracture Mechanics Meshless 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lucy L (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024 ADSCrossRefGoogle Scholar
  2. 2.
    Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196 ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 20:1081–1106 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Randles PW, Libersky L (2000) Normalized sph with stress points. Int J Numer Methods Eng 48:1445–1461 CrossRefMATHGoogle Scholar
  6. 6.
    Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139:375–408 ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Randles PW, Libersky LD (1997) Recent improvements in sph modeling of hypervelocity impact. Int J Impact Eng 20:525–532 CrossRefGoogle Scholar
  8. 8.
    Randles PW, Carney TC, Libersky LD (1995) Sph simulation of fragmentation in the mk82 bomb. Shock Compress Condens Matter 370:331–334 CrossRefGoogle Scholar
  9. 9.
    Randles PW, Carney TC, Libersky LD (1995) Calculation of oblique impact and fracture of tungsten cubes using smoothed particle hydrodynamics. Int J Impact Eng 17:661–672 CrossRefGoogle Scholar
  10. 10.
    Rabczuk T, Eibl J (2003) Simulation of high velocity concrete fragmentation using sph/mlsph. Int J Numer Methods Eng 56:1421–1444 CrossRefMATHGoogle Scholar
  11. 11.
    Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2d and 3d. Int J Numer Methods Eng 63(11):1559–1582 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Rabczuk T (2006) Modelling dynamic failure of concrete with meshfree methods. Int J Impact Eng 32(11):1878–1897 CrossRefGoogle Scholar
  13. 13.
    Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193:1035–1063 ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Vignjevic R, Reveles JR, Campbell J (2006) Sph in a total Lagrangian formalism. Comput Model Eng Sci 14(3):181–198 MathSciNetGoogle Scholar
  15. 15.
    Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unified stability analysis of meshfree particle methods. Int J Numer Methods Eng 48:1359–1400 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Belytschko T, Lu YY (1995) Element-free Galerkin methods for static and dynamic fracture. Int J Solids Struct 32:2547–2570 CrossRefMATHGoogle Scholar
  17. 17.
    Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2):295–315 ADSCrossRefGoogle Scholar
  18. 18.
    Belytschko T, Tabbara M (1996) Dynamic fracture using element-free Galerkin methods. Int J Numer Methods Eng 39(6):923–938 CrossRefMATHGoogle Scholar
  19. 19.
    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47 ADSCrossRefMATHGoogle Scholar
  20. 20.
    Hao S, Liu WK, Klein PA, Rosakis AJ (2004) Modeling and simulation of intersonic crack growth. Int J Solids Struct 41(7):1773–1799 CrossRefMATHGoogle Scholar
  21. 21.
    Krysl P, Belytschko T (1999) The efgm for dynamic propagation of arbitrary three-dimensional cracks. Int J Numer Methods Eng 44(6):767–800 CrossRefMATHGoogle Scholar
  22. 22.
    Belytschko T, Chen H, Xu J, Zi G (2001) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905 CrossRefMATHGoogle Scholar
  23. 23.
    Song J-H, Areais PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67:868–893 CrossRefMATHGoogle Scholar
  24. 24.
    Rabczuk T, Gracie R, Song J-H, Belytschko T (2010) Immersed particle method for fluid-structure interaction. Int J Numer Methods Eng 81:48–71 MathSciNetMATHGoogle Scholar
  25. 25.
    Ventura G, Xu J, Belytschko T (2002) A vector level set method and new discontinuity approximation for crack growth by efg. Int J Numer Methods Eng 54(6):923–944 CrossRefMATHGoogle Scholar
  26. 26.
    Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 40:1483–1504 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Belytschko T, Fleming M (1999) Smoothing, enrichment and contact in the element free Galerkin method. Comput Struct 71:173–195 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zi G, Rabczuk T, Wall W (2007) Extended meshfree methods without branch enrichment for cohesive cracks. Comput Mech 40(2):367–382 CrossRefMATHGoogle Scholar
  29. 29.
    Rabczuk T, Belytschko T (2006) Application of particle methods to static fracture of reinforced concrete structures. Int J Fract 137(14):19–49 CrossRefMATHGoogle Scholar
  30. 30.
    Rabczuk T, Areias P (2006) A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Comput Model Eng Sci 16(2):115–130 Google Scholar
  31. 31.
    Rabczuk T, Bordas S, Zi G (2007) A three dimensional meshfree method for static and dynamic multiple crack nucleation/propagation with crack path continuity. Comput Mech 40(3):473–495 CrossRefMATHGoogle Scholar
  32. 32.
    Rabczuk T, Areias PMA, Belytschko T (2007) A simplified meshfree method for shear bands with cohesive surfaces. Int J Numer Methods Eng 69:993–1021 MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Rabczuk T, Areias PMA, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 72(5):524–548 MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196(2930):2777–2799 ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2008) A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Eng Fract Mech 75:4740–4758 CrossRefGoogle Scholar
  36. 36.
    Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79:763–813 MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343 CrossRefMATHGoogle Scholar
  38. 38.
    Beissel S, Belytschko T (1996) Nodal integration in the elementfree Galerking method. Comput Methods Appl Mech Eng 138:49–74 ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Vignjevic R, Reveles JR, Campbell J (2006) Sph in a total Lagrangian formalism. Comput Model Eng Sci 14:181–198 MathSciNetGoogle Scholar
  40. 40.
    Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in sph with applications in fluid flow problems. Int J Numer Methods Eng 72(3):295–324 MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Dyka CT, Ingel RP (1995) An approach for tensile instability in SPH. Comput Struct 57:573–580 CrossRefMATHGoogle Scholar
  42. 42.
    Bazant ZP, Belytschko T (1985) Wave propagation in a strain softening bar: exact solution. J Eng Mech ASCE 11:381–389 CrossRefGoogle Scholar
  43. 43.
    Bazant ZP, Oh BH (1983) Crack band theory for fracture in concrete. Mater Struct 16:155–177 Google Scholar
  44. 44.
    Sun Y, Hu YG, Liew KM (2007) A mesh-free simulation of cracking and failure using the cohesive segments method. Int J Eng Sci 45:541–553 CrossRefMATHGoogle Scholar
  45. 45.
    Wang HX, Wang SX (2008) Analysis of dynamic fracture with cohesive crack segment method. Comput Model Eng Sci 35(3):253–274 MathSciNetMATHGoogle Scholar
  46. 46.
    Arrea M, Ingraffea AR Mixed-mode crack propagation in mortar and concrete. Technical report 81-13, Department of Structural Engineering, Cornell University New York, 1982 Google Scholar
  47. 47.
    Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434 ADSCrossRefMATHGoogle Scholar
  48. 48.
    Zhang YY, Chen L (2008) A simplified meshless method for dynamic crack growth. Comput Model Eng Sci 31:189–199 MATHGoogle Scholar
  49. 49.
    Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39(6):743–760 CrossRefMATHGoogle Scholar
  50. 50.
    Sharon E, Gross PSP, Fineberg J (1995) Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74:5096–5099 ADSCrossRefGoogle Scholar
  51. 51.
    Ravi-Chandar K (1998) Dynamic fracture of nominally brittle materials. Int J Fract 90:83–102 CrossRefGoogle Scholar
  52. 52.
    Rabczuk T, Belytschko T (2007) A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196:2777–2799 ADSMathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. Int Conf Impact Load Dyn Behav Mater 1:185–195 Google Scholar
  54. 54.
    Rabczuk T, Zi G, Gerstenberger A, Wall WA (2008) A new crack tip element for the phantom node method with arbitrary cohesive cracks. Int J Numer Methods Eng 75:577–599 CrossRefMATHGoogle Scholar
  55. 55.
    Ravi-Chandar K, Lu J, Yang B, Zhu Z (2000) Failure modes transitions in polymers under high strain rate loading. Int J Fract 101:33–72 CrossRefGoogle Scholar
  56. 56.
    Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199:2437–2455 ADSCrossRefMATHGoogle Scholar
  57. 57.
    Batra RC, Gummalla RR (2000) Effect on material and geometric parameters on deformations near the notch-tip of a dynamically loaded prenotched plate. Int J Fract 101(99–140) Google Scholar
  58. 58.
    Batra RC, Ravisankar MVS (2000) Three-dimensional numerical simulation of the Kalthoff experiment. Int J Fract 105(161–186) Google Scholar
  59. 59.
    Zhou M, Ravichandran G, Rosakis A (1996) Dynamically propagating shear bands in impact-loaded prenotched plates—I. J Mech Phys Solids 44:981–1006 ADSCrossRefGoogle Scholar
  60. 60.
    Zhou M, Ravichandran G, Rosakis A (2000) Dynamically propagating shear bands in impact-loaded prenotched plates—II. J Mech Phys Solids 44 (1007–1032) Google Scholar
  61. 61.
    Rabczuk T, Samaniego E (2008) Discontinuous modelling of shear bands using adaptive meshfree methods. Comput Methods Appl Mech Eng 197:641–658 ADSMathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Rabczuk T, Song J-H, Belytschko T (2009) Simulations of instability in dynamic fracture by the cracking particles method. Eng Fract Mech 76:730–741 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Applied MechanicsIndian Institute of Technology DelhiaNew DelhiIndia

Personalised recommendations