Advertisement

Meccanica

, Volume 46, Issue 4, pp 681–697 | Cite as

Glow discharge in low pressure plasma PVD: mathematical model and numerical simulations

  • A. Speranza
  • L. Barletti
  • L. Meacci
  • S. Fanfani
  • I. Borsi
  • A. Monti
Original Article

Abstract

In this paper we analyze the problem of glow discharge in low pressure plasma in industrial plant, for chambers of different shapes and various working parameters, like pressure and electric potential. The model described is based upon a static approximation of the AC configuration with two electrodes and a drift diffusion approximation for the current density of positive ions and electrons. A detailed discussion of the boundary conditions imposed is given, as well as the full description of the mathematical model.

Numerical simulations were performed for a simple 1D model and two different 2D models, corresponding to two different settings of the industrial plant. The simpler case consists of a radially symmetric chamber, with one central electrode (cathode), based upon a DC generator. In this case, the steel chamber acts as the anode. The second model concerns a two dimensional horizontal cut of the most common plant configuration, with two electrodes connected to an AC generator. The case is treated in a “quasi-static” approximation. The three models show some common behaviours, particularly including the main expected features, such as dark spaces, glow regions and a wide “plasma region”. Furthermore, the three shown models show some similarities with previously published results concerning 1D and simplified 2D models, as well as with some preliminary results of the full 3D case.

Keywords

PVD Glow discharge Surface coating Plasma Drift-diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen JE (1976) A note on the generalized sheath criterion. J Phys D, Appl Phys 9(16):2331 ADSCrossRefGoogle Scholar
  2. 2.
    Andrews JG, Stangeby PG (1970) Generalization of the sheath criterion in an anisotropic plasma. J Phys A, Gen Phys 3(5):L39 ADSCrossRefGoogle Scholar
  3. 3.
    Barnes MS, Cotler TJ, Elta ME (1987) Large-signal time-domain modeling of low-pressure rf glow discharges. J Appl Phys 61(1):81–89 ADSCrossRefGoogle Scholar
  4. 4.
    Boeuf J-P (1987) Numerical model of rf glow discharges. Phys Rev A 36(6):2782–2792 ADSCrossRefGoogle Scholar
  5. 5.
    Boeuf JP (1988) A two-dimensional model of dc glow discharges. J Appl Phys 63:1342 ADSCrossRefGoogle Scholar
  6. 6.
    Boeuf JP, Pitchford LC (1995) Two-dimensional model of capacitively coupled rf discharge and comparisons with experiments in the gaseous electronics conference reference reactor. Phys Rev E 51(2):1376–1390 ADSCrossRefGoogle Scholar
  7. 7.
    Bohm D (1949) In: Guthrie A, Wakerling RK (eds) The characteristics of electrical discharges in magnetic fields. McGraw-Hill, New York, p 77 Google Scholar
  8. 8.
    Class WH Basics of plasmas. Internal notes by Materials Research Corporation Google Scholar
  9. 9.
    Comsol AB COMSOL multiphysics user’s guide. Version: September, 2005 Google Scholar
  10. 10.
    Deuflhard P (1974) A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer Math 22(4):289–315 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fiala A, Pitchford LC, Boeuf JP (1994) Two-dimensional, hybrid model of low-pressure glow discharges. Phys Rev E 49(6):5607–5622 ADSCrossRefGoogle Scholar
  12. 12.
    Franklin RN, Ockendon JR (1970) Asymptotic matching of plasma and sheath in an active low pressure discharge. J Plasma Phys 4(02):371–385 ADSCrossRefGoogle Scholar
  13. 13.
    Godyak V, Sternberg N (2002) On the consistency of the collisionless sheath model. Phys Plasmas 9:4427 ADSCrossRefGoogle Scholar
  14. 14.
    Gogolides E, Nicolai J-P, Sawin HH (1989) Comparison of experimental measurements and model predictions for radio-frequency ar and sf[sub 6] discharges. J Vac Sci Technol A, Vac Surf Films 7(3):1001–1006 ADSCrossRefGoogle Scholar
  15. 15.
    Graves DB (1987) Fluid model simulations of a 13.56-MHz rf discharge: Time and space dependence of rates of electron impact excitation. J Appl Phys 62:88 ADSCrossRefGoogle Scholar
  16. 16.
    Graves DB, Jensen KF (1986) A continuum model of DC and RF discharges. IEEE Trans Plasma Sci 14(2):78–91 ADSCrossRefGoogle Scholar
  17. 17.
    Guo S, van Ooij WJ (1998) Kinetics of DC discharge plasma polymerization of hexamethyldisiloxane and pyrrole. Plasmas Polym 3(1):1–21 CrossRefGoogle Scholar
  18. 18.
    Hagelaar GJM, de Hoog FJ, Kroesen GMW (2000) Boundary conditions in fluid models of gas discharges. Phys Rev E 62(1):1452–1454 ADSCrossRefGoogle Scholar
  19. 19.
    Hegemann D, Schutz U, Fischer A (2005) Macroscopic plasma-chemical approach to plasma polymerization of HMDSO and CH4. Surf Coat Technol 20:458–462 CrossRefGoogle Scholar
  20. 20.
    Meyyappan M, Kreskovsky JP (1990) Glow discharge simulation through solutions to the moments of the Boltzmann transport equation. J Appl Phys 68:1506 ADSCrossRefGoogle Scholar
  21. 21.
    Mojab CJ (1981) Glow discharge processes, by Brian Chapman. J Vac Sci Technol 19(3):812–812 ADSCrossRefGoogle Scholar
  22. 22.
    Muta H, Koga M, Itagaki N, Kawai Y (2002) Numerical investigation of a low-electron-temperature ECR plasma in Ar/N2 mixtures. Surf Coat Technol 171(1–3):157–161 CrossRefGoogle Scholar
  23. 23.
    Passchier JDP, Goedheer WJ (1993) A two-dimensional fluid model for an argon rf discharge. J Appl Phys 74:3744 ADSCrossRefGoogle Scholar
  24. 24.
    Posin DQ (1936) The Townsend coefficients and spark discharge. Phys Rev 50(7):650–658 ADSCrossRefGoogle Scholar
  25. 25.
    Richards AD, Thompson BE, Sawin HH (1987) Continuum modeling of argon radio frequency glow discharges. Appl Phys Lett 50(9):492–494 ADSCrossRefGoogle Scholar
  26. 26.
    Riemann KU (1991) The Bohm criterion and sheath formation. J Phys D, Appl Phys 24:493–518 ADSCrossRefGoogle Scholar
  27. 27.
    Riemann KU (1997) The influence of collisions on the plasma sheath transition. Phys Plasmas 4:4158 ADSCrossRefGoogle Scholar
  28. 28.
    Roy S, Pandey BP, Poggie J, Gaitonde DV (2003) Modeling low pressure collisional plasma sheath with space-charge effect. Phys Plasmas 10:2578 ADSCrossRefGoogle Scholar
  29. 29.
    Sanders FH (1932) The value of the Townsend coefficient for ionization by collision at large plate distances and near atmospheric pressure. Phys Rev 41(5):667–677 ADSCrossRefGoogle Scholar
  30. 30.
    Sanders FH (1933) Measurement of the Townsend coefficients for ionization by collision. Phys Rev 44(12):1020–1024 ADSCrossRefGoogle Scholar
  31. 31.
    Scheuer JT, Emmert GA (1988) A collisional model of the plasma presheath. Phys Fluids 31(6):1748–1756 ADSCrossRefGoogle Scholar
  32. 32.
    Sheridan TE, Goree J (1991) Collisional plasma sheath model. Phys Fluids B, Plasma Phys 3:2796 CrossRefGoogle Scholar
  33. 33.
    Surendra M, Graves DB, Jellum GM (1990) Self-consistent model of a direct-current glow discharge: Treatment of fast electrons. Phys Rev A 41(2):1112–1125 ADSCrossRefGoogle Scholar
  34. 34.
    Tonks L, Langmuir I (1929) A general theory of the plasma of an arc. Phys Rev 34(6):876–922 ADSCrossRefGoogle Scholar
  35. 35.
    Townsend J (1915) Electricity in gases. Clarendon, Oxford Google Scholar
  36. 36.
    Valentini H-B (1996) Bohm criterion for the collisional sheath. Phys Plasmas 3(4):1459–1461 ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    Valentini H-B (2000) Sheath formation in low-pressure discharges. Plasma Sources Sci Technol 9(4):574 ADSCrossRefGoogle Scholar
  38. 38.
    Wang SB, Wendt AE (1999) Sheath thickness evaluation for collisionless or weakly collisional bounded plasmas. IEEE Trans Plasma Sci 27(5):1358–1365 ADSCrossRefGoogle Scholar
  39. 39.
    Ward AL (2004) Calculations of cathode-fall characteristics. J Appl Phys 33:2789 ADSCrossRefGoogle Scholar
  40. 40.
    Zawaideh E, Najmabadi F, Conn RW (1986) Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas. Phys Fluids 29(2):463–474 ADSMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • A. Speranza
    • 1
  • L. Barletti
    • 2
  • L. Meacci
    • 2
  • S. Fanfani
    • 3
  • I. Borsi
    • 2
  • A. Monti
    • 1
  1. 1.Innovazione. Ind. T. Trasf. Tecnologico—I²T³ OnlusFirenzeItaly
  2. 2.Dip. di MatematicaUniversità degli Studi di FirenzeFirenzeItaly
  3. 3.Galileo Vacuum Systems s.p.a.PratoItaly

Personalised recommendations