Advertisement

Meccanica

, Volume 46, Issue 4, pp 671–680 | Cite as

Propagation of torsional waves in an inhomogeneous layer over an inhomogeneous half-space

  • A. Chattopadhyay
  • S. Gupta
  • Pato Kumari
  • V. K. Sharma
Original Article

Abstract

The present paper is concerned with the study of propagation of torsional waves in an inhomogeneous isotropic layer whose material properties vary harmonically with a space variable, lying over a semi-infinite inhomogeneous isotropic half-space. The closed form solutions for the displacement in the layer and half-space are obtained separately. The dimensionless phase velocity has been plotted against dimensionless wave number and scaled wave number for different values of inhomogeneity parameters. The effects of inhomogeneity have been shown in the dispersion curves using 2D and 3D plot.

Keywords

Torsional surface waves Heun function Whittaker function Inhomogeneous half-space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bo GM, Ronca G (1970) Study of the propagation of a torsional wave in a curved wire. Meccanica 5(4):297–305 MATHCrossRefGoogle Scholar
  2. 2.
    Davini C et al. (2008) An asymptotic approach to the torsion problem in thin rectangular domains. Meccanica 43(4):429–435 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dey S et al. (1993) Torsional surface wave in an elastic half-space with void pores. Int J Numer Anal Methods Geomech 17:197–204 MATHCrossRefGoogle Scholar
  4. 4.
    Dey S et al. (1996) Torsional surface waves in nonhomogeneous and anisotropic medium. J Acoust Soc Am 99(5):2737–2741 ADSCrossRefGoogle Scholar
  5. 5.
    Dey S et al. (2001) Propagation of torsional surface waves in a heterogeneous half-space under a rigid layer. Acta Geophys Pol 49(1):113–118 Google Scholar
  6. 6.
    Ewing WM et al. (1957) Elastic waves in layered media. McGraw-Hill, New York MATHGoogle Scholar
  7. 7.
    Georgiadis HG et al. (2000) Torsional surface waves in a gradient-elastic half space. Wave Motion 31:333–348 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gubbins D (1990) Seismology and plate tectonics. Cambridge University Press, Cambridge/New York, p. 170 Google Scholar
  9. 9.
    Kennett BLN, Tkalčić H (2008) Dynamic Earth: crustal and mantle heterogeneity. Aust J Earth Sci 55:265–279 CrossRefGoogle Scholar
  10. 10.
    Meissner E (1921) Elastiche Oberflächenwellen mit Dispersion in einem inhomogenen Medium. Vierteljahressch Naturforsch Ges 66:181–195 Google Scholar
  11. 11.
    Rayleigh L (1945) Theory of sound. Dover, New York MATHGoogle Scholar
  12. 12.
    Ronveaux A (1995) Heun’s differential equations. Oxford University Press, New York MATHGoogle Scholar
  13. 13.
    Vardoulakis I (1984) Torsional surface waves in inhomogeneous elastic media. Int J Numer Anal Methods Geomech 8:287–296 MATHCrossRefGoogle Scholar
  14. 14.
    Vrettos C (1990) In-plane vibrations of soil deposits with variable share modulus: I: Line load. Int J Numer Anal Methods Geomech 14(9):649–662 MATHCrossRefGoogle Scholar
  15. 15.
    Vrettos C (1990) In-plane vibrations of soil deposits with variable share modulus: I: Surface waves. Int J Numer Anal Methods Geomech 14(3):209–222 MATHCrossRefGoogle Scholar
  16. 16.
    Watanabe K (1984) Plane SH-waves in harmonically inhomogeneous elastic media. Wave Motion 6:477–488 MATHCrossRefGoogle Scholar
  17. 17.
    Whittaker ET, Watson GN (1927) A course of modern analysis. Cambridge University Press, Cambridge MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • A. Chattopadhyay
    • 1
  • S. Gupta
    • 1
  • Pato Kumari
    • 1
  • V. K. Sharma
    • 1
  1. 1.Department of Applied MathematicsIndian School of MinesDhanbadIndia

Personalised recommendations