, Volume 45, Issue 6, pp 881–895 | Cite as

On the use of bioluminescence for estimating shear stresses over a rippled seabed

  • Enrico Foti
  • Carla Faraci
  • Romano Foti
  • Giovanni Bonanno


The bioluminescence emitted by micro-planktonic organisms has been adopted to detect shear stresses within oscillating flows over small scale bedforms. To this aim, an experimental campaign has been planned in order to optimize optical detectors and to address peculiar needs of biological organisms.

Oscillating flow over ripples has been simulated in an annular cell, an apparatus that permits one to carry out experiments on ripple formation under well controlled conditions. Bioluminescence emission within the annular cell ascertains the existence of a high shear stress regime induced by the presence of the rippled bed in the range of Reynolds numbers between 2000 and 11000. Stress maps obtained from the experimental campaign showed the stronger stresses close to the rippled bed, with maximum values ranging between 15 and 35 Pa. 2D numerical simulations of oscillating flows over a rippled bed have been also run reproducing the experimental conditions, showing a good agreement on the position of the high stress regions, but underpredicting the maximum shear stress.

Bioluminescence appears to be a valid instrument to characterize the flow and in particular to visualize high stress areas, leading to the possibility to measure shear stresses directly. Though limits occur, mostly due to the difficulties of dealing with biological organisms, such an approach can be considered as a starting point for the development of a bio-inspired visually based system for flow measurements.


Bioluminescence Ripples Shear stress Annular cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson DM, Nosenchuck DM, Reynolds GT, Walton A (1988) Mechanical stimulation of bioluminescence in the dinoflagellate gonyaulax polyedra stein. J Exp Mar Biol Ecol 122(3):277–288 CrossRefGoogle Scholar
  2. 2.
    Arnskov MM, Fredsøe J, Sumer BM (1993) Bed shear stress measurements over a smooth bed in three dimensional wave-current motion. Coast Eng 47:431–441 Google Scholar
  3. 3.
    Belluso M, Bonanno G, Calí A, Carbone A, Cosentino R, Modica A, Scuderi S, Timpanaro C, Uslenghi M (2001) A new photon counting detector: intensified CMOS-APS. Number 4498 in SPIE Google Scholar
  4. 4.
    Bityukov EP (1971) Bioluminescence in the wake current in the Atlantic ocean and Mediterranean sea. Okean 11:127–133 Google Scholar
  5. 5.
    Blaser S, Kurisu F, Satoh H, Mino T (2002) Hydromechanical stimulation of bioluminescent plankton. Luminescence 17:370–380 CrossRefGoogle Scholar
  6. 6.
    Bonanno G, Belluso M, Calí A, Timpanaro C, Uslenghi M, Fiorini M, Modica A (2001) Photon counting system based on intensified CMOS-APS: PC-IAPS. Number 4498 in SPIE Google Scholar
  7. 7.
    Cussatlegras A, Le Gal P (2004) Bioluminescence of the dinoflagellate pyrocystis noctiluca induced by laminar and turbulent couette flow. J Exp Mar Biol Ecol 310:227–246 CrossRefGoogle Scholar
  8. 8.
    Cussatlegras A, Le Gal P (2005) Diniflagellate bioluminescence in response to mechanical stimuli in water flows. Nonlinear Processes Geophys 12:337–343 CrossRefADSGoogle Scholar
  9. 9.
    Cussatlegras A, Le Gal P (2007) Variability in the bioluminescence response of the dinoflagellate pyrocystis lunula. J Exp Mar Biol Ecol 343:74–81 CrossRefGoogle Scholar
  10. 10.
    Deane GB, Stokes MD (2005) A quantitative model for flow induced bioluminescence in dinoflagellates. J Theor Biol 237:147–169 CrossRefMathSciNetGoogle Scholar
  11. 11.
    Faraci C, Foti E, Musumeci RE (2008) Waves plus currents at a right angle: the rippled bed case. J Geophys Res 113:C07018. doi: 10.1029/2007JC004468 CrossRefGoogle Scholar
  12. 12.
    Foti E, Scandura P (2004) A low Reynolds number kε model validated for oscillatory flows over smooth and rough wall. Coast Eng 51:173–184 CrossRefGoogle Scholar
  13. 13.
    Foti E, Faraci C (2005) Prediction of bedform and bed roughness in combined steady and oscillatory flows. In: van Rijn L et al. (ed) SandPit project book. Aqua Publ., The Netherlands Google Scholar
  14. 14.
    Fredsøe J, Andersen KH, Sumer BM (1999) Wave plus current over a ripple-covered bed. Coast Eng 38:177–221 CrossRefGoogle Scholar
  15. 15.
    Gooch V, Vidaver W (1980) Kinetic analysis of the influence of hydrostatic pressure on bioluminescence of goniaulax polyedra. Photochem Photobiol 31(4):397–402 CrossRefGoogle Scholar
  16. 16.
    Harvey EN (1952) Bioluminescence. Academic Press, New York Google Scholar
  17. 17.
    Herring PJ (1998) Dolphins glow with the flow. Nature 393:731–732 CrossRefADSGoogle Scholar
  18. 18.
    Kelly CJ, Tumsaroj N, Lajoie C (2004) Assessing wastewater metal toxicity with bacterial bioluminescence in a bench-scale wastewater treatment system. Water Res 38:423–431 CrossRefGoogle Scholar
  19. 19.
    Latz MI, Frangos JA (1995) Bioluminescence of marine plankton cells in response to defined fluid shear stress. Biorheology 32:158–163 CrossRefGoogle Scholar
  20. 20.
    Latz MI, Juhl AR, Ahmed AM, Elghobashi SE, Rohr J (2004) Hydrodynamic stimulation of dinoflagellate bioluminescence: a computational and experimental study. J Exp Biol 207:1941–1951 CrossRefGoogle Scholar
  21. 21.
    Latz MI, Rohr J (1999) Luminescent response of the red tide dinoflagellates lingulodinium polyedrum to laminar and turbulent flow. Limnol Oceanogr 44:1423–1435 CrossRefGoogle Scholar
  22. 22.
    Latz MI, Case JF, Gran RL (1994) Excitation of bioluminescence by laminar fluid shear associated with simple couette flow. Limnol Oceanogr 39:1424–1439 CrossRefGoogle Scholar
  23. 23.
    Latz MI, Rohr J, Hoyt J (1995) A novel flow visualization technique using bioluminescent marine plankton. Flow Vis 7:28–33 Google Scholar
  24. 24.
    Latz MI, Bovard M, VanDelinder V, Segre E, Rohr J, Groisman A (2008) Bioluminescent response of individual dinoflagellate cells to hydrodynamic stress measured with millisecond resolution in a microfluidic device. J Exp Biol 211:2865–2875 CrossRefGoogle Scholar
  25. 25.
    Latz MI (2009) Pers comm to GB Deane Google Scholar
  26. 26.
    Loo WTY, Tong JMK, Cheung MNB, Chow LWC (2006) A new predictive and prognostic marker (ATP bioluminescence and positron emission tomography) in vivo and in vitro for delivering adjuvant treatment plan to invasive breast tumor patients. Biomed Pharmacother 60:285–288 CrossRefGoogle Scholar
  27. 27.
    Madsen OS (1993) Sediment transport on the shelf. Technical report, Parsons Lab MIT, Massachusetts Google Scholar
  28. 28.
    Nielsen P (1992) Coastal bottom boundary layers and sediment transport. World Scientific, Singapore CrossRefGoogle Scholar
  29. 29.
    Ourmieres Y, Chaplin JR (2004) Alexandrium tamarense species summary. In: Hewitt CL, Martin RB, Sliwa C, McEnnulty, FR, Murphy, NE, Jones T, Cooper, S, (eds) National introduced marine pest information system Google Scholar
  30. 30.
    Ourmieres Y, Chaplin JR (2004) Visualization of the disturbed-laminar wave-induced flow above a rippled bed. Exp Fluids 36(6):908–918 CrossRefGoogle Scholar
  31. 31.
    Paerl HW (1988) Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol Oceanogr 33(4):823–847, Part I CrossRefGoogle Scholar
  32. 32.
    Rohr J, Losee J, Anderson G (1994) The response of bioluminescent organisms to fully developed pipe flow. Technical Report 1360, Naval Command Control and Ocean Surveillance Center, RDT&E Div Google Scholar
  33. 33.
    Rohr J, Allen J, Losee J, Latz MI (1997) The use of bioluminescence as a flow diagnostic. Phys Lett A 228:408–416 CrossRefADSGoogle Scholar
  34. 34.
    Rohr J, Latz MI, Fallon S, Nauen JC, Hendricks E (1998) Experimental approaches towards interpreting dolphin-stimulated bioluminescence. J Exp Biol 201:1447–1460 Google Scholar
  35. 35.
    Rohr J, Hyman M, Fallon S, Latz MI (2002) Bioluminescence flow visualization in the ocean: an initial strategy based on laboratory experiments. Deep-Sea Res 49:2009–2033, Part I CrossRefGoogle Scholar
  36. 36.
    Scherer MA, Melo F, Marder M (1999) Sand ripples in an oscillating annular sand-water cell. Phys Fluids 11(1):58–67 MATHCrossRefADSGoogle Scholar
  37. 37.
    Sleath JFA (1976) On rolling grain ripples. J Hydraul Res 14:69–81 CrossRefGoogle Scholar
  38. 38.
    Staples RF (1966) The distribution and characteristics of surface bioluminescence in the oceans. Technical Report 184, Naval Oceanographic Office Google Scholar
  39. 39.
    Stegner A, Wesfreid JE (1999) Dynamical evolution of sand ripples under water. Phys Rev E 60(4):R3487–R3490 CrossRefADSGoogle Scholar
  40. 40.
    Stokes MD, Deane GB, Latz MI, Rohr J (2004) Bioluminescence imaging of wave-induced turbulence. J Geophys Res 109:C01004 CrossRefGoogle Scholar
  41. 41.
    Sumer BM, Arnskov MM, Christiansen N, Jorgensen FE (1993) Two-component hot-film probe for measurement of wall shear stress. Exp Fluids 15:380–384 CrossRefGoogle Scholar
  42. 42.
    Sweeney BM (1984) Circadian rhythmicity in dinoflagellates. Academic Press, Orlando, pp 343–364 Google Scholar
  43. 43.
    Tarasov NI (1956) Marine luminescence. Technical Report NOO T-21, Naval Oceanographic Office Google Scholar
  44. 44.
    Uslenghi M, Bonanno G, Belluso M, Calí A, Timpanaro C, Cosentino R, Scuderi S, Modica A (2002) Progress on photon counting intensified. APS, Number 4498 in SPIE Google Scholar
  45. 45.
    van Driest ER (1956) On turbulent flow near a wall. J Aeronaut Sci 23(11):1007–1011 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Enrico Foti
    • 1
  • Carla Faraci
    • 2
  • Romano Foti
    • 3
  • Giovanni Bonanno
    • 4
  1. 1.Department of Civil and Environmental EngineeringUniversity of CataniaCataniaItaly
  2. 2.Department of Civil EngineeringUniversity of MessinaMessinaItaly
  3. 3.Department of Civil and Environmental EngineeringColorado State UniversityFort CollinsUSA
  4. 4.INAF - Astrophysical ObservatoryCataniaItaly

Personalised recommendations