, Volume 45, Issue 3, pp 331–340 | Cite as

The Kepler problem: a concealed vector



By reconsidering anew our unitary S-description of the family of Kepler conic sections, we show how the plane sum vector S unravels at the core the existence of a constant vector N, which not only discloses in a natural way the cone structure in R 3 which defines the Kepler conic sections, but also enlightens the peculiar genesis of the map devised by Levi-Civita for the regularization of the Kepler problem at collision.


Kepler problem Conic sections Regularization General mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Condurache D, Martinusi V (2007) A complete closed form vectorial solution to the Kepler problem. Meccanica 42:465–476 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Deprit A, Elipe A, Ferrer S (1994) Linearization: Laplace vs Stiefel. Celest Mech Dyn Astron 58:151–201 CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Levi-Civita T (1973) Opere Matematiche, vol 6. Zanichelli, Bologna, pp 111–133 Google Scholar
  4. 4.
    Stiefel EL, Scheifele G (1971) Linear and regular celestial mechanics. Springer, Berlin MATHGoogle Scholar
  5. 5.
    Vivarelli MD (1994) The Kepler problem: a unifying view. Celest Mech Dyn Astron 60:291–305 MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Vivarelli MD (2000) The sum vector S and the fictitious time s in the Kepler problem. Meccanica 35:55–67 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Vivarelli MD (2005) The amazing S-code of the conic sections and the Kepler problem. Polipress, Milano Google Scholar
  8. 8.
    Vivarelli MD (2007) A Julia set for the Kepler problem. Meccanica 42:365–374 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Dipartimento di Matematica F. BrioschiPolitecnico di MilanoMilanoItaly

Personalised recommendations