Advertisement

Meccanica

, Volume 44, Issue 4, pp 457–464 | Cite as

Reference model control for improving motion accuracy of a micro lathe

  • Eduardo Castillo-Castaneda
  • Yuichi Okazaki
Article

Abstract

A two-axis micro-lathe was developed in 1996 at the former Mechanical Engineering Laboratory in Tsukuba, Japan, for machining of small pieces as a part of the Micro-factory concept. Each axis is driven by a set of built-in PZT actuators. The work presented here concerns the design and implementation of a reference model control algorithm to improve the motion accuracy of the micro-lathe. The motion control was originally assured by a PI action considering dead zone. The performances of the reference model control were experimentally tested and compared with those obtained with PI control for four common trajectories used in manufacturing machines.

Keywords

Micro-lathe PZT actuator Accuracy Reference model control Micro-machines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okazaki Y, Mishima N, Ashida K (2002) Microfactory and micro machine tools. In: 1st Korea-Japan conference on positioning technology, Daejeon, Korea Google Scholar
  2. 2.
    Ooyama N, Kokaji S, Tanaka M, Ashida K, Mishima N, Maekawa H, Tanikawa T, Kaneko K (2000) Desktop machining microfactory. In: 2nd international workshop on microfactories, pp 13–16, Fribourg, Switzerland, 9–10 October 2000 Google Scholar
  3. 3.
    Kitahara T, Ashida K, Tanaka M, Ishikawa Y, Ooyama N, Nakazawa Y (1998) Microfactory and microlathe. In: Proceedings of international workshop on microfactories, pp 1–8 Google Scholar
  4. 4.
    Okazaki Y, Kitahara T (2000) NC micro-lathe to machine micro-parts. In: Proceedings of the 2000 ASPE annual meeting, pp 575–578 Google Scholar
  5. 5.
    Okazaki Y, Kitahara T (2000) Micro-lathe equipped with closed-loop numerical control. In: 2nd international workshop on microfactories, pp 87–90, Fribourg, Switzerland, 9–10 October 2000 Google Scholar
  6. 6.
    Matsuo T, Nakamura H, Matsuzaki K, Uemura K, Kabashima T (2000) Development of micro stages for microfactories. In: 2nd international workshop on microfactories, Fribourg, Switzerland, 9–10 October 2000 Google Scholar
  7. 7.
    Sze-Wei G, Han-Seok L, Rahman M, Watt F (2007) A fine tool servo system for global position error compensation for a miniature ultra-precision lathe. Int J Mach Tools Manuf 47:1302–1310 CrossRefGoogle Scholar
  8. 8.
    Zhang D, Tian Y, Zhao X (2004) A novel numeral control micro-positioning grinding table driven by three piezoelectric actuators. In: Proceedings of the 11th world congress in mechanism and machine science, Tianjin, China, 1–4 April 2004 Google Scholar
  9. 9.
    Zhong Z, Nakagawa T (1992) Development of a microdisplacement table for ultra-precision machining and grinding for curved surfaces. Int J Jpn Soc Precis Eng 6(2):102–107 Google Scholar
  10. 10.
    Richer H, Misawa EA, Lucca DA, Lu H (2001) Modeling nonlinear behaviour in a piezoelectric actuator. Precis Eng 25(2):128–137 CrossRefGoogle Scholar
  11. 11.
    Galante T, Frank J, Bernard J, Chen W, Lesieutre GA, Koopmann GH (1999) Design, modeling, and performance of a high force piezoelectric inchworm motor. J Intell Mater Syst Struct 10(12):962–972 CrossRefGoogle Scholar
  12. 12.
    Yong L, Min G, Zhaoying Z, Min H (2002) Micro electro discharge machine with an inchworm type of micro feed mechanism. Precis Eng 26(1):7–14 CrossRefGoogle Scholar
  13. 13.
    De Larminant P, Thomas Y (1977) Automatique des systémes linéaires, 3: commande. Flammarion Sciences, France Google Scholar
  14. 14.
    Pourboghrat F, Vlastos G (2002) Model reference adaptive sliding control for linear systems. Comput Electr Eng 28(5):361–374 MATHCrossRefGoogle Scholar
  15. 15.
    Stewart P, Kadirkamanathan V (2001) Dynamic model reference PI control of permanent magnet AC motor drives. Control Eng Pract 9(11):1255–1263 CrossRefGoogle Scholar
  16. 16.
    Ekrekli A, Brookfield DJ (1997) The practical implementation of model reference robot control. Mechatronics 7(6):549–564 CrossRefGoogle Scholar
  17. 17.
    Kreisselmeier G, Anderson B (1986) Robust model reference adaptive control. IEEE Trans Autom Control 31(2):127–133 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Mirkin BM, Gutman P (2005) Output feedback model reference adaptive control for multi-input–multi-output plants with state delay. Syst Control Lett 54(10):961–972 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lecchini A, Lanzon A, Anderson BDO (2006) A model reference approach to safe controller changes in iterative identification and control. Automatica 42(2):193–203 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pietrabissa A (2008) A multi-model reference control approach for bandwidth-on-demand protocols in satellite networks. Control Eng Pract 16(7):847–860 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Centro de Investigacion en Ciencia Aplicada y Tecnologia AvanzadaInstituto Politecnico NacionalQueretaroMexico
  2. 2.Advanced Manufacturing Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations