Advertisement

Meccanica

, Volume 43, Issue 1, pp 11–20 | Cite as

Analyzing dynamic interaction of impulse-loaded strips

  • B. YA. Kantor
  • S. V. Ugrimov
  • A. N. Shupikov
Article

Abstract

The paper considers the dynamic process of contact interaction of infinite impulse-loaded strips arranged with a gap. The behavior of the strips is described by linear elastic dynamics equations. The contact problem is solved by the collocation method. The process of impact of two and three strips is analyzed. The calculation results are compared with data obtained by using the finite-element method.

Keywords

Strip Dynamic Impulse loading Elasticity Contact mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vorovich II, Aleksandrov VM (eds) (2001). Contact mechanics. Fizmatgiz, Moscow Google Scholar
  2. Galin LA (ed) (1976). Development of the theory of contact problems in the USSR. Nauka, MoscowGoogle Scholar
  3. Bezine G and Fortune D (1984). Contact between plates by a new direct boundary integrall equation formulation. Int J Solids Struct 20(8): 739–746 MATHCrossRefGoogle Scholar
  4. Johnson KL (1989). Contact mechanics. Mir, Moscow Google Scholar
  5. Goldsmith W (1960). Impact. Edward Arnold, London MATHGoogle Scholar
  6. Aleksandrov VM (1968). Asymptotic methods in contact problems of the elasticity theory. Prikladnaya matematika i mekhanika (Appl Math Mech) 32(4): 672–683 Google Scholar
  7. Mackerle J (1998). Contact mechanics-Finite element and boundary element approaches—a bibliography (1995–1997). Finite Elem Anal Des 29: 275–285 CrossRefMathSciNetGoogle Scholar
  8. Kantor BYa (1990). Contact problems of the nonlinear theory of rotation shells. Naukova Dumka, Kiev Google Scholar
  9. Podgorny AN, Gontarovsky PP, Kirkach VN, Matiukhin YuI and Khavin GL (1989). Problems in contact interaction of structural elements. Naukova Dumka, Kiev Google Scholar
  10. Andersson T (1981) The boundary element method applied to two dimensional contact problems with friction. In: Brebbia CA (ed) Proceedings of the 3 international seminar on recent advances in boundary element methods. Springer, BerlinGoogle Scholar
  11. Burago NG and Kukudzhanov VN (2005). Review of contact algorithms. Mekhanika tverdogo tela (Mech Solids) 1: 45–87 Google Scholar
  12. Zelentsov VB (2004). On nonstationary dynamic contact problems in the theory of elasticity with a variable contact zone width. Prikladnaya matematika i mekhanika (Appl Math Mech) 68(1): 119–134 MATHMathSciNetGoogle Scholar
  13. Jäger J (2002). New analytical and numerical results for two-dimensional contact profiles. Int J Solids Struct 39(4): 959–972 MATHCrossRefGoogle Scholar
  14. Beghini M and Santus C (2007). Analysis of the plane contact with discontinuous curvature. Meccanica 42: 95–106 CrossRefGoogle Scholar
  15. Gorshkov AG and Tarlakovsky DV (1995). Dynamic contact problems with mobile boundaries. Nauka Publishers, Moscow Google Scholar
  16. Flitman LM (1959). Dynamic problem for a die in an elastic semiplane. Prikladnaya matematika i mekhanika (Appl Math Mech) 23(4): 697–705 MathSciNetGoogle Scholar
  17. Robinson AR and Thompson JC (1974). Transient stresses in an elastic half-space resulting from the frictionless indentation of a rigid wedge-shaped die. Z Angew Math Mech 54(3): 139–144 CrossRefGoogle Scholar
  18. Babeshko VA (1995). Dummy absorption method in the form of the Fourier transform. Doklad RAN (Rep Russ Acad Sci) 345(4): 475–478 MathSciNetGoogle Scholar
  19. Babeshko VA and Priakhina OD (1980). Dummy absorption method in plane dynamic problems. Prikladnaya matematika i mekhanika (Appl Math Mech) 44(3): 477–484 MathSciNetGoogle Scholar
  20. Shupikov AN and Ugrimov SV (2006). The impact problem for two strips. Int J Solids Struct 43: 3817–3831 MATHCrossRefGoogle Scholar
  21. Shupikov AN and Ugrimov SV (1999). Vibrations of multilayer plates under the effect of impulse loads. Three-dimensional theory. Int J Solids Struct 36: 3391–3402 MATHCrossRefGoogle Scholar
  22. Shupikov AN, Buz’ko YaP, Smetankina NV, Ugrimov SV (2004) Nonstationary vibrations of multilayer plates and shells, and their optimization. Publishing House “INZhEK”, KharkovGoogle Scholar
  23. Lanczos C (1956). Applied analysis. Prentice Hall, Englewood Cliffs Google Scholar
  24. Weingarten LI and Reismann H (1974). Forced motion of cylindrical shells—a comparison of shell theory with elasticity theory. Z Angew Math Mech 54(3): 181–191 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • B. YA. Kantor
    • 1
  • S. V. Ugrimov
    • 1
  • A. N. Shupikov
    • 1
  1. 1.A. M. Pidgorny Institute for Mechanical Engineering ProblemsNational Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations