, Volume 41, Issue 2, pp 119–142 | Cite as

Frictional Oscillations Under the Action of Almost Periodic Excitation



Frictional oscillations under the action of almost periodic force are studied. The modulation equations are derived by the multiple scales method to study bifurcations behavior. Heteroclinic Melnikov function is constructed to obtain the region of chaotic solutions of these equations. Bifurcations of almost periodic orbits are studied by Van der Pol transformation and averaging procedure.


Frictional oscillations Heteroclinic orbits Multiple scales method Heteroclinic Melnikov function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Den Hartog, J.P. 1985Mechanical VibrationsMc Graw HillNew on DoverGoogle Scholar
  2. 2.
    Andronov A.A., Vitt A.A., Khaikin S.E., Theory of Oscillations, Pergamon Press, 1966.Google Scholar
  3. 3.
    Kauderer, H. 1958Nonlinear MechanicsSpringer- VerlagBerlin(in German)Google Scholar
  4. 4.
    Kononenko V.O., Frictional auto-oscillations close to harmonic. Transactions of civil engineering institute of USSR Academy of Science (1954), N9 (in Russian).Google Scholar
  5. 5.
    Kononenko, V.O. 1956Vibrating Systems with a Limiting Power SupplyIliffeLondonGoogle Scholar
  6. 6.
    Alifov, A.A., Frolov, K.V. 1964Interactions of the Nonlinear Systems with Energy SourcesNaukaMoscow(in Russian)Google Scholar
  7. 7.
    Popp, K., Stelter, P. 1990‘Stick-slip vibrations and chaos’Phil. Trans. R. Soc. Lond. A33289105ADSGoogle Scholar
  8. 8.
    Oestreich, M., Hinrichs, N., Popp, K. 1996‘Bifurcation and stability analysis for a non-smooth friction oscillator’Arch. Appl. Mech.66301304Google Scholar
  9. 9.
    Feeny, B., Moon, F.C. 1994‘Chaos in a forced dry-friction oscillator: experiment and numerical modeling’J. Sound Vib.170303323CrossRefADSGoogle Scholar
  10. 10.
    Feeny, B.F., Moon, F.C. 1993Bifurcation Sequences of a Columb friction oscillatorNonlinear Dynam42537Google Scholar
  11. 11.
    Wojewoda, J., Kapitaniak, T. 1993‘Oscillations of a quasi-periodically forced system with dry friction’J. Sound Vib.163379384CrossRefADSGoogle Scholar
  12. 12.
    Wojewoda, J., Barron, R., Kapitaniak, T. 1992‘Chaotic behavior of friction force’Int J. Bifurcation Chaos2205209CrossRefGoogle Scholar
  13. 13.
    Popp, K., Stelter, P. 1989‘Nonlinear Oscillations of Structures Induced by Dry Friction’Schiehlen, W. eds. Nonlinear Dynamics in Engineering.IUTAM SymposiumStuttgart233240Google Scholar
  14. 14.
    Awrejcewicz, J., Delfs, J. 1990‘Dynamics of a self-exicted stick-slip oscillator with two degrees of freedom. Part 1: Investigation of equilibria’Euro. J. Mech. A/Solids9269282MathSciNetGoogle Scholar
  15. 15.
    Awrejcewicz, J., Delfs, J. 1990‘Dynamics of a self-exicted stick-slip oscillator with two degrees of freedom Part 2: Slip-stick, slip-slip, stick-slip transitions, periodic and chaotic orbits’Eur. J. Mech. A/Solids9397418MathSciNetGoogle Scholar
  16. 16.
    Awrejcewicz, J., Holicke, M.M. 1999‘Melnikov’s method and stick-slip chaotic oscillations in very weakly forced mechanical systems’Int. J. Bifurcation Chaos9505518CrossRefGoogle Scholar
  17. 17.
    Awrejcewicz, J., Olejnik, P. 2003‘Stick-slip dynamics of a two-degree-of-freedom system’Int. J. Bifurcation Chaos13397418MathSciNetGoogle Scholar
  18. 18.
    Awrejcewicz, J., Dzyubak, L., Grebogi, C. 2004‘A direct numerical method for quantifying regular and chaotic orbits’Chaos, Solitons and Fractals19503507CrossRefGoogle Scholar
  19. 19.
    Awrejcewicz, J., Dzyubak, L. 2003‘Stick-slip chaotic oscillations in a quasi-autonomous mechanical system’Int. J. Nonlinear Sci. Numer. Simul.4155160Google Scholar
  20. 20.
    Awrejcewicz, J., Pyryev, Yu. 2002‘Thermo elastic contact of a rotating shaft with a rigid bush in conditions of bush wear and stick-slip movements’Int. J. Eng. Sci.4011131130CrossRefGoogle Scholar
  21. 21.
    Awrejcewicz J., Pyryev Yu., Tribological periodic processes exhibited by acceleration or braking of a shaft-pad system’. Commun. Nonlinear Sci. Numer. Simul. (to appear).Google Scholar
  22. 22.
    Awrejcewicz, J., Lamarque, C.-H. 2003Bifurcation and Chaos in Nonsmooth Mechanical SystemsWorld ScientificSingaporeGoogle Scholar
  23. 23.
    Bogacz R., Ryczek B. ‘Friction phenomena in a system with external excitation’, in 6th Conference on Dynamical Systems Theory and Applications (2001), Lodz, December.Google Scholar
  24. 24.
    Balandin, D.B. 1993‘Frictional Auto-oscillations in clearance’Mech. Solids (Proc. Russian Acad. Sci.)15460(in Russian)Google Scholar
  25. 25.
    Marjuta, A.N. 1989‘Analysis of motions of mechanical systems with frictional interaction’Int. Appl. Mech.258495MATHGoogle Scholar
  26. 26.
    Landa, P.S. 1980Auto-oscillations of the Systems with Finite Degree of FreedomNaukaMoscow(in Russian)Google Scholar
  27. 27.
    Pfeiffer, F. 1996‘Complementary problems of stick-slip vibrations’J. Vib. Acoustic.118423434Google Scholar
  28. 28.
    Sinou, J., Thouverez, F., Jezequel, L. 2002Stability Analysis and Application of the Center Manifold Theory for a Nonlinear Sprag-slip Model. IMAC-XXLos AngelesCaliforniaGoogle Scholar
  29. 29.
    Sinou J., Thouverez F., Jezequel L. and Mazet G.-B., ‘Friction, instability and parametric studies of a nonlinear model for a aircraft brake whirl analysis. ASME Design Engineering, Technical Conference and Computers and Information Pittsburg, (2001).Google Scholar
  30. 30.
    Kragelskii, I.V. 1965Friction and WearButterworthsWashingtonGoogle Scholar
  31. 31.
    Feeny, B., Guran, A., Hinrichs, N., Popp, K. 1998‘An historica review on friction in nonlinear dynamics’App. Mech. Rev.51321341Google Scholar
  32. 32.
    Malkin, I.G. 1956Some Problems in the Theory of Nonlinear OscillationsGITTLMoscow(in Russian)Google Scholar
  33. 33.
    Nayfeh, A.H., Mook, D.T. 1979Nonlinear OscillationsWileyNew York704Google Scholar
  34. 34.
    Vavriv D.M., Ryabov V.B., Sharapov S.A., Ito H.M. ‘Chaotic states of weakly and strongly nonlinear oscillators with quasiperiodic excitation’, Phys. Rev. E 53(1) 103–113.Google Scholar
  35. 35.
    Wiggins S. ‘Chaos in quasiperiodically forced Duffing oscillator’. Phys. Lett. A. 124(3) (1987).Google Scholar
  36. 36.
    Ide, K., Wiggins, S. 1989‘The bifurcation to harmonic tori in the quasiperiodically forced Duffing oscillator’Phys. D34169182CrossRefMathSciNetGoogle Scholar
  37. 37.
    Yagasaki, K. 1992‘Chaotic dynamics of a quasi-periodically forced beam’ASME J. Appl. Mech.59123130MathSciNetGoogle Scholar
  38. 38.
    Yagasaki, K. 1995‘Bifurcations and chaos in a quasi-periodically forced beam: theory, simulation and experiment’J. Sound Vib.183131CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Yagasaki, K. 1993‘Chaotic motions near homoclinic manifolds and resonant tori in quasiperiodic perturbations of planar Hamiltonian systems’Phys. D.69232269CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Wiggins, S 1988Global Bifurcations and Chaos-Analytical MethodsSpringer-VerlagNew YorkGoogle Scholar
  41. 41.
    Guckenheimer, J., Holmes, P. 1983Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector FieldsSpringer-VerlagNew YorkGoogle Scholar
  42. 42.
    Holmes, C., Holmes, P.J. 1981‘Second order averaging and bifurcations to subharmonic in Duffing’s equation’J. Sound Vib.78161174Google Scholar
  43. 43.
    Chow, S.N., Shaw, S.W. 1986Bifurcations of subharmonics’J. Differ. Eq.65304320CrossRefMathSciNetGoogle Scholar
  44. 44.
    Shaw S.W., Rand R.H., ‘The transition to Chaos in a simple mechanical system. I’, J. Non- Linear Mech. 24(1) 41–56.Google Scholar
  45. 45.
    Avramov K.V., ‘Bifurcations of parametric oscillations of beams with three equilibria’, Acta Mechanica (2003).Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Gas and Fluid MechanicsNational Technical University “Kharkov Polytechnic University”KharkovUkraine
  2. 2.Department of Automatics and BiomechanicsTechnical University of LodzLodzPoland

Personalised recommendations