, Volume 40, Issue 1, pp 49–63 | Cite as

Start-up Flow of a Bingham Fluid in a Pipe

  • I. Daprà
  • G. Scarpi


We present an analytical solution of axisymmetric motion for a Bingham fluid initially at rest subjected to a constant pressure gradient applied suddenly. Using the Laplace transform, we obtain expressions which allow the calculation of the instantaneous velocity, plug radius and rate of flow as a function of time. We also give a relation for the shear stress in the plug and in the region where the behaviour of the fluid is Newtonian.


Bingham fluid Unsteady flow Pipe flow Fluid mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duggins, R.K. 1972‘The commencement of flow of a Bingham plastic fluid’Chem. Eng. Sci2719911996Google Scholar
  2. 2.
    Mitra, A.K. 1984‘Impulsively started flow of a Bingham plastic in a tube’ASME FED152325Google Scholar
  3. 3.
    Hammad, K.J. 1998‘Unsteady pipe flows of a viscoplastic non-Newtonian fluid: effects of pressure gradient waveform’ASME FED247197204Google Scholar
  4. 4.
    Hammad, K.J., Vradis, G.C. 1996‘Pulsatile flows of a Bingham plastic in circular pipes’ASME FED237685690Google Scholar
  5. 5.
    Ly, D.P., Bellet, D. 1976‘The study of time-dependent pipe flows of inelastic non-Newtonian fluids using a multiviscous approximation’J. Non-Newtonian Fluid Mech1287304Google Scholar
  6. 6.
    Nakamura, M., Sawada, T. 1987‘Numerical Study on the laminar pulsatile flow of slurries’J. Non-Newtonian Fluid Mech22191206Google Scholar
  7. 7.
    Glowinski, R. 1974‘Sur L’écoulement d’un fluide de Bingham dans une conduite cylindrique’J. de Méc.13601621Google Scholar
  8. 8.
    Huilgol, R.R., Mena, B. 2000‘On the time estimate for start-up of pipe flows in a Bingham fluid – a proof of the result due to Glowinski, Lions and Trémolière’J. Non-Newtonian Fluid Mech94113118Google Scholar
  9. 9.
    Daprà I., Scarpi G., ‘Start-up of a channel-flow of a Bingham fluid initially at rest’. Rend. Mat. Acc. Lincei, 9 (15) (2004).Google Scholar
  10. 10.
    Bird, R.B., Dai, G.C., Yarusso, B.J. 1983‘The Rheology and flow of viscoplastic materials’Rev. Chem. Eng1170Google Scholar
  11. 11.
    Abramowitz, M., Stegun, I.A.. 1965Handbook of Mathematical FunctionsDoverNew YorkGoogle Scholar
  12. 12.
    Brown, R.G., Nilsson, J.W. 1962Introduction to Linear System AnalysisWileyNew YorkGoogle Scholar
  13. 13.
    Safronchik A.I., ‘Non-steady Flow of a visco-plastic Material between parallel Walls’. PMM 23(5) (1959) 925–935. J. Appl. Math. Mech. 23 (1959) 1314–1327.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.DISTART – University of BolognaBolognaItaly

Personalised recommendations