Advertisement

Meccanica

, Volume 40, Issue 1, pp 1–18 | Cite as

Dynamic Analysis of Spatial Linkages: A Recursive Approach

  • Hazem Ali Attia
Article

Abstract

In this paper, recursive equations of motion of spatial linkages are presented. The method uses the concepts of linear and angular momentums to generate the rigid body equations of motion in terms of the Cartesian coordinates of a dynamically equivalent constrained system of particles, without introducing any rotational coordinates and the corresponding rotational transformation matrix. For the open-chain system, the equations of motion are generated recursively along the serial chains. Closed-chain system is transformed to open-chain by cutting suitable kinematic joints and introducing cut–joint constraints. An example is chosen to demonstrate the generality and simplicity of the developed formulation.

Keywords

Dynamic analysis Equations of motion Recursive formulation Spatial motion Mechanisms Machine Kinematics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Denavit J., Hartenberg, R.S., ‘A Kinematic notation for lower-pair mechanisms based on matrices’, ASME J. Appl. Mech.(1955) 215–221Google Scholar
  2. 2.
    Sheth, P.N., Uicker, J.J.,Jr. 1972‘IMP (Integrated Mechanisms Program), A Computer-Aided Design Analysis System for Mechanisms Linkages’ASME J. Eng. Indust94454Google Scholar
  3. 3.
    Orlandea, N., Chace, M.A., Calahan, , D.A.,  1977‘A Sparsity-oriented approach to dynamic analysis and design of mechanical systems, Part I and II’ASME J. Eng. Indust99773784Google Scholar
  4. 4.
    Nikravesh, P.E. 1988Computer Aided Analysis of Mechanical SystemsPrentice-HallEnglewood Cliffs, NJGoogle Scholar
  5. 5.
    De Jalon J.G., Bayo E.(1994). ‘Kinematic and Dynamic Simulation of Multibody Systems’, SpringerGoogle Scholar
  6. 6.
    Kim, S.S., Vanderploeg, M.J. 1986‘A general and efficient method for dynamic analysis of mechanical systems using velocity transformation’ASME J. Mech. Trans. Automation Des108176182Google Scholar
  7. 7.
    Nikravesh, P.E. and Gim, G., ‘Systematic construction of the equations of motion for multibody systems containing closed kinematic loop’, ASME Des. Conf. 1989.Google Scholar
  8. 8.
    De Jalon, J.G., Unda, J., Avello, A. and Jimenez, J.M., ‘Dynamic analysis of three-dimensional mechanisms in ‘Natural’ coordinates’, ASME Paper No. 86-DET-137, 1986.Google Scholar
  9. 9.
    Attia, H.A., A Computer-Oriented Dynamical Formulation with Applications to Multibody Systems, Ph.D. Dissertation, Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, 1993.Google Scholar
  10. 10.
    Nikravesh, P.E. and Attia, H.A., ‘Construction of the equations of motion for multibody dynamics using point and joint coordinates’, Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, NATO ASI, Series E: Applied Sciences vol. 268, Kluwer Academic Publications, 1994, pp. 31–60.Google Scholar
  11. 11.
    Attia, H.A. 1998‘Formulation of the equations of motion for the RRRR robot manipulator’Trans. Can. Soc. Mech. Eng228393Google Scholar
  12. 12.
    Attia, H.A. 2003‘Dynamic analysis of planar linkages: a recursive approach’Meccanica48405418Google Scholar
  13. 13.
    Goldstein, H. 1950Classical MechanicsAddison-WesleyReading, MAGoogle Scholar
  14. 14.
    Gear, C.W. 1988‘Differential-algebraic equations index transformations’SIAM J. Sci. Stat. Comput93947Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Hazem Ali Attia
    • 1
  1. 1.Department of Mathematics, College of ScienceKing Saud UniversityBuraidahKSA

Personalised recommendations