Long non-coding RNAs and cell death following ischemic stroke

Abstract

Stroke is a major cause of morbidity and mortality worldwide, and extensive efforts have focused on the improvement of therapeutic strategies to reduce cell death following ischemic stroke. Uncovering the cellular and molecular pathophysiological processes in ischemic stroke have been a top priority. Long noncoding RNAs (lncRNAs) are endogenous molecules that play key roles in the pathophysiology of cerebral ischemia, and involved in the neuronal cell death during ischemic stroke. In recent years, a bulk of aberrantly expressed lncRNAs have been screened out in ischemic stroke insulted animals. LncRNAs along with their targets could affect the genetic machinery at molecular levels, and exploring their functions and mechanisms may be a promising option for ischemic stroke treatment. In this review, we summarize the current knowledge for lncRNAs in ischemic stroke, focusing on the role of specific lncRNAs that may underlie cell death to find possible therapeutic targets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aliaga E, Silhol M, Bonneau N, Maurice T, Arancibia S, Tapia-Arancibia L (2010) Dual response of BDNF to sublethal concentrations of β-amyloid peptides in cultured cortical neurons. Neurobiol Dis 37:208–217

    Article  CAS  PubMed  Google Scholar 

  2. Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE (2019) NLRP3 inflammasome in ischemic stroke: as possible therapeutic target. Int J Stroke 1747493019841242

  3. Bao M-H, Szeto V, Yang BB, Zhu S-z, Sun H-S, Feng Z-P (2018) Long non-coding RNAs in ischemic stroke. Cell Death Dis 9:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baucum AJ, Shonesy BC, Rose KL, Colbran RJ (2015) Quantitative proteomics analysis of CaMKII phosphorylation and the CaMKII interactome in the mouse forebrain. ACS Chem Neurosci 6:615–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhattarai S, Pontarelli F, Prendergast E, Dharap A (2017) Discovery of novel stroke-responsive lncRNAs in the mouse cortex using genome-wide. RNA-seq. Neurobiol Dis 108:204–212

    Article  CAS  PubMed  Google Scholar 

  6. Boon RA, Jaé N, Holdt L, Dimmeler S (2016) Long noncoding RNAs: from clinical genetics to therapeutic targets? J Am Coll Cardiol 67:1214–1226

    Article  CAS  PubMed  Google Scholar 

  7. Broadbent NJ, Squire LR, Clark RE (2004) Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci U S A 101:14515–14520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brunkow ME, Tilghman S (1991) Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev 5:1092–1101

    Article  CAS  PubMed  Google Scholar 

  9. Cai H et al (2017) Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma. Oncogene 36:318

    Article  CAS  PubMed  Google Scholar 

  10. Carpenter S et al (2013) A long noncoding RNA mediates both activation and repression of immune response genes. science 341:789–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cesana M et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous. RNA. Cell 147:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen S et al (2017) LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochem Biophys Res Commun 485:167–173

    Article  CAS  PubMed  Google Scholar 

  13. Conway E, Healy E, Bracken AP (2015) PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr Opin Cell Biol 37:42–48

    Article  CAS  PubMed  Google Scholar 

  14. Dharap A, Nakka VP, Vemuganti R (2012) Effect of focal ischemia on long noncoding RNAs. Stroke 43:2800–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dharap A, Pokrzywa C, Vemuganti R (2013) Increased binding of stroke-induced long non-coding RNAs to the transcriptional corepressors Sin3A and coREST. ASN Neuro 5:AN20130029

    Article  CAS  Google Scholar 

  16. Donkor ES (2018) Stroke in the century: a snapshot of the burden, epidemiology, and quality of life stroke research and treatment 2018

  17. Duan L-J, Ding M, Hou L-J, Cui Y-T, Li C-J, Yu D-M (2017) Long noncoding RNA TUG1 alleviates extracellular matrix accumulation via mediating microRNA-377 targeting of PPARγ in diabetic nephropathy. Biochem Biophys Res Commun 484:598–604

    Article  CAS  PubMed  Google Scholar 

  18. Dykstra-Aiello C et al (2016) Altered expression of long noncoding RNAs in blood after ischemic stroke and proximity to putative stroke risk loci. Stroke 47:2896–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721

    Article  CAS  PubMed  Google Scholar 

  20. Feigin VL, Norrving B, Mensah GA (2017) Global burden of stroke. Circ Res 120:439–448

    Article  CAS  PubMed  Google Scholar 

  21. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54:271–284

    Article  CAS  PubMed  Google Scholar 

  22. Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470:284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gray CBB, Heller Brown J (2014) CaMKIIdelta subtypes: localization and function. Front Pharmacol 5:15

  24. Group I-C (2012) The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. Lancet 379:2352–2363

    Article  CAS  Google Scholar 

  25. Han X, Yang F, Cao H, Liang Z (2015) Malat1 regulates serum response factor through miR-133 as a competing endogenous RNA in myogenesis. FASEB J 29:3054–3064

    Article  CAS  PubMed  Google Scholar 

  26. Hawkins KE et al (2017) Targeting resolution of neuroinflammation after ischemic stroke with a lipoxin A4 analog: protective mechanisms and long-term effects on neurological recovery. Brain and behavior 7:e00688

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hu W, Alvarez-Dominguez JR, Lodish HF (2012) Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep 13:971–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang H-L, Lin C-C, Jeng K-CG, Yao P-W, Chuang L-T, Kuo S-L, Hou C-W (2012) Fresh green tea and gallic acid ameliorate oxidative stress in kainic acid-induced status epilepticus. J Agric Food Chem 60:2328–2336

    Article  CAS  PubMed  Google Scholar 

  29. Hudmon A, Kim SA, Kolb SJ, Stoops JK, Waxham MN (2001) Light scattering and transmission electron microscopy studies reveal a mechanism for calcium/calmodulin-dependent protein kinase II self-association. J Neurochem 76:1364–1375

    Article  CAS  PubMed  Google Scholar 

  30. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ji T-T, Huang X, Jin J, Pan S-H, Zhuge X-J (2016) Inhibition of long non-coding RNA TUG1 on gastric cancer cell transference and invasion through regulating and controlling the expression of miR-144/c-met axis. Asian Pac J Trop Med 9:508–512

    Article  CAS  PubMed  Google Scholar 

  32. Ji Y, Guo X, Zhang Z, Huang Z, Zhu J, Chen Q-H, Gui L (2017) CaMKIIδ meditates phenylephrine induced cardiomyocyte hypertrophy through store-operated Ca2+ entry. Cardiovasc Pathol 27:9–17

    Article  CAS  PubMed  Google Scholar 

  33. Jung JE, Karatas H, Liu Y, Yalcin A, Montaner J, Lo EH, Van Leyen K (2015) STAT-dependent upregulation of 12/15-lipoxygenase contributes to neuronal injury after stroke. J Cereb Blood Flow Metab 35:2043–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karreth FA et al (2011) In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khalil AM et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci 106:11667–11672

    Article  PubMed  Google Scholar 

  36. Khoshnam SE, Sarkaki A, Khorsandi L, Winlow W, Badavi M, Moghaddam HF, Farbooda Y (2017a) Vanillic acid attenuates effects of transient bilateral common carotid occlusion and reperfusion in rats. Biomed Pharmacother 96:667–674

    Article  CAS  PubMed  Google Scholar 

  37. Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M (2017b) Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents. J Stroke 19:166

    Article  PubMed  PubMed Central  Google Scholar 

  38. Khoshnam SE, Winlow W, Farzaneh M (2017c) The interplay of MicroRNAs in the inflammatory mechanisms following ischemic stroke. J Neuropathol Exp Neurol 76:548–561

    Article  CAS  PubMed  Google Scholar 

  39. Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF (2017d) Pathogenic mechanisms following ischemic stroke. Neurol Sci 38:1167–1186

    Article  PubMed  Google Scholar 

  40. Khoshnam SE, Farbood Y, Moghaddam HF, Sarkaki A, Badavi M, Khorsandi L (2018a) Vanillic acid attenuates cerebral hyperemia, blood-brain barrier disruption and anxiety-like behaviors in rats following transient bilateral common carotid occlusion and reperfusion. Metab Brain Dis:1–9

  41. Khoshnam SE, Sarkaki A, Rashno M, Farbood Y (2018b) Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid Life sciences

  42. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest–and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8

    PubMed  PubMed Central  Google Scholar 

  43. Kumar G, Goyal MK, Sahota PK, Jain R (2010) Penumbra, the basis of neuroimaging in acute stroke treatment: current evidence. J Neurol Sci 288:13–24

    Article  PubMed  Google Scholar 

  44. Li L et al. (2016) Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Mol Cancer Ther

  45. Li Z, Li J, Tang N (2017) Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience 354:1–10

    Article  CAS  PubMed  Google Scholar 

  46. Liu X, Hou L, Huang W, Gao Y, Lv X, Tang J (2016) The mechanism of long non-coding RNA MEG3 for neurons apoptosis caused by hypoxia: mediated by miR-181b-12/15-LOX signaling pathway. Front Cell Neurosci 10:201

    PubMed  PubMed Central  Google Scholar 

  47. Lorenzen JM, Martino F, Thum T (2012) Epigenetic modifications in cardiovascular disease. Basic Res Cardiol 107:245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu K-h et al (2013) Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer 13:461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma X, Shao C, Jin Y, Wang H, Meng Y (2014) Long non-coding RNAs: a novel endogenous source for the generation of dicer-like 1-dependent small RNAs in Arabidopsis thaliana. RNA Biol 11:373–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma F, Wang S-h, Cai Q, L-y J, Zhou D, Ding J, Z-w Q (2017) Long non-coding RNA TUG1 promotes cell proliferation and metastasis by negatively regulating miR-300 in gallbladder carcinoma. Biomed Pharmacother 88:863–869

    Article  CAS  PubMed  Google Scholar 

  51. Mattingsdal M et al (2013) Pathway analysis of genetic markers associated with a functional MRI faces paradigm implicates polymorphisms in calcium responsive pathways. Neuroimage 70:143–149

    Article  CAS  PubMed  Google Scholar 

  52. Mehta SL, Kim T, Vemuganti R (2015) Long noncoding RNA FosDT promotes ischemic brain injury by interacting with REST-associated chromatin-modifying proteins. J Neurosci 35:16443–16449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300

    Article  CAS  Google Scholar 

  54. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155

    Article  CAS  PubMed  Google Scholar 

  55. Michalik KM et al (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114:1389–1397

    Article  CAS  PubMed  Google Scholar 

  56. Mondal T et al (2015) MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures. Nat Commun 6:7743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moran A, Forouzanfar M, Sampson U, Chugh S, Feigin V, Mensah G (2013) The epidemiology of cardiovascular diseases in sub-Saharan Africa: the global burden of diseases, injuries and risk factors 2010 study. Prog Cardiovasc Dis 56:234–239

    Article  PubMed  PubMed Central  Google Scholar 

  58. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ng SY, Johnson R, Stanton LW (2012) Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 31:522–533

    Article  CAS  PubMed  Google Scholar 

  60. Noh K-M et al (2012) Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proc Natl Acad Sci:201121568

  61. Paonessa F et al (2016) Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor. Proc Natl Acad Sci 113:E91–E100

    Article  CAS  PubMed  Google Scholar 

  62. Peng W et al (2015) Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression. J Exp Clin Cancer Res 34:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schaukowitch K, Kim T-K (2014) Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience 264:25–38

    Article  CAS  PubMed  Google Scholar 

  65. Srinivasan M, Edman CF, Schulman H (1994) Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J Cell Biol 126:839–852

    Article  CAS  PubMed  Google Scholar 

  66. Sun H-s, Feng Z-p (2013) Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia. Acta Pharmacol Sin 34:24

    Article  CAS  PubMed  Google Scholar 

  67. Sun H-S et al (2008) Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke 39:2544–2553

    Article  CAS  PubMed  Google Scholar 

  68. Sun H-S et al (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12:1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun H-S et al (2015) Neuronal KATP channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic–ischemic brain injury. Exp Neurol 263:161–171

    Article  CAS  PubMed  Google Scholar 

  70. Szcześniak MW, Makałowska I (2016) lncRNA-RNA interactions across the human transcriptome. PLoS One 11:e0150353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tan Z et al (2014) Combination treatment of r-tPA and an optimized human apyrase reduces mortality rate and hemorrhagic transformation 6 h after ischemic stroke in aged female rats. Eur J Pharmacol 738:368–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tang Y, Jin X, Xiang Y, Chen Y, Shen C-x, Zhang Y-c, Li Y-g (2015) The lncRNA MALAT1 protects the endothelium against ox-LDL-induced dysfunction via upregulating the expression of the miR-22-3p target genes CXCR2 and AKT. FEBS Lett 589:3189–3196

    Article  CAS  PubMed  Google Scholar 

  73. Tekle WG et al (2012) Intravenous thrombolysis in expanded time window (3-4.5 hours) in general practice with concurrent availability of endovascular treatment. J Vasc Interv Neurol 5:22

    PubMed  PubMed Central  Google Scholar 

  74. Thangavelu K, Kannan R, Kumar NS, Rethish E, Sabitha S, Sayeeganesh N (2012) Significance of localization of mandibular foramen in an inferior alveolar nerve block. J Nat Sci Biol Med 3:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tripathi V et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vakili A, Mojarrad S, Akhavan MM, Rashidy-Pour A (2011) Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats. Brain Res 1377:119–125

    Article  CAS  PubMed  Google Scholar 

  77. Van der Worp H et al (2002) The effect of tirilazad mesylate on infarct volume of patients with acute ischemic stroke. Neurology 58:133–135

    Article  PubMed  Google Scholar 

  78. Velayatzadeh M, ASKARY SA, Beheshti M, Mahjob S, Hoseini M (2014) Measurement of heavy metals (HG, CD, SN, ZN, NI, FE) in canned tuna fish product in central cities, Iran

  79. Wang P, Ren Z, Sun P (2012) Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 113:1868–1874

    Article  CAS  PubMed  Google Scholar 

  80. Wang SH et al (2016) The lnc RNA MALAT 1 functions as a competing endogenous RNA to regulate MCL-1 expression by sponging miR-363-3p in gallbladder cancer. J Cell Mol Med 20:2299–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang Y, Yang T, Zhang Z, Lu M, Zhao W, Zeng X, Zhang W (2017) Long non-coding RNA TUG 1 promotes migration and invasion by acting as a ce RNA of miR-335-5p in osteosarcoma cells. Cancer Sci 108:859–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang H, Liao S, Yu J (2019) Abstract WP347: long non-coding RNA TUG1 contributes to microglial activation after oxygen glucose deprivation stroke 50:AWP347-AWP347

  83. Williams AB, Schumacher B (2016) p53 in the DNA-damage-repair process. Cold Spring Harbor perspectives in medicine a026070

  84. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu Z et al (2017) LncRNA-N1LR enhances neuroprotection against ischemic stroke probably by inhibiting p53 phosphorylation. Mol Neurobiol 54:7670–7685

    Article  CAS  PubMed  Google Scholar 

  86. Xiao H et al (2015) LncRNA MALAT1 functions as a competing endogenous RNA to regulate ZEB2 expression by sponging miR-200s in clear cell kidney carcinoma. Oncotarget 6:38005

    PubMed  PubMed Central  Google Scholar 

  87. Xu Q et al (2016) Long non-coding RNA C2dat1 regulates CaMKIIδ expression to promote neuronal survival through the NF-κB signaling pathway following cerebral ischemia. Cell Death Dis 7:e2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yan H, Yuan J, Gao L, Rao J, Hu J (2016) Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience 337:191–199

    Article  CAS  PubMed  Google Scholar 

  89. Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, Fang G (2012) Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J 279:3159–3165

    Article  CAS  PubMed  Google Scholar 

  90. Ye J et al. (2018) Ischemic injury-induced CaMKIIδ and CaMKIIγ confer neuroprotection through the NF-κB signaling pathway. Mol Neurobiol 1–14

  91. Yoon J-H et al (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47:648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Young T, Matsuda T, Cepko C (2005) The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol 15:501–512

    Article  CAS  PubMed  Google Scholar 

  93. Yu G, Wu F, Wang E-S (2015) BQ-869, a novel NMDA receptor antagonist, protects against excitotoxicity and attenuates cerebral ischemic injury in stroke. Int J Clin Exp Pathol 8:1213

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yuan L, Zhang J, Chen YE, Yin K-J (2015) Long non-coding RNAs mediate cerebrovascular endothelial pathologies in ischemic stroke. Stroke 46:A72–A72

    Google Scholar 

  95. Yuan P, Cao W, Zang Q, Li G, Guo X, Fan J (2016) The HIF-2α-MALAT1-miR-216b axis regulates multi-drug resistance of hepatocellular carcinoma cells via modulating autophagy. Biochem Biophys Res Commun 478:1067–1073

    Article  CAS  Google Scholar 

  96. Zhang X et al. (2010) Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer research:0008-5472. CAN-0009-3885

  97. Zhang J et al (2016) Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Exp Neurol 277:162–170

    Article  CAS  PubMed  Google Scholar 

  98. Zhang X, Tang X, Liu K, Hamblin MH, Yin K-J (2017) Long non-coding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci:3389–3316

  99. Zhang X, Hamblin MH, Yin K-J (2018) Noncoding RNAs and stroke the neuroscientist 1073858418769556

  100. Zhao F et al (2015) Microarray profiling and co-expression network analysis of LncRNAs and mRNAs in neonatal rats following hypoxic-ischemic brain damage. Sci Rep 5:13850

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhou Y, Zhang X, Klibanski A (2012) MEG3 non-coding RNA: a tumor suppressor. J Mol Endocrinol: JME-12-0008

  102. Zhuo H et al (2016) The aberrant expression of MEG3 regulated by UHRF1 predicts the prognosis of hepatocellular carcinoma. Mol Carcinog 55:209–219

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyed Esmaeil Khoshnam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alishahi, M., Ghaedrahmati, F., Kolagar, T.A. et al. Long non-coding RNAs and cell death following ischemic stroke. Metab Brain Dis 34, 1243–1251 (2019). https://doi.org/10.1007/s11011-019-00423-2

Download citation

Keywords

  • Long non-coding RNA
  • Ischemic stroke
  • Cell death