Skip to main content

Antioxidant and antidepressant-like effects of Eugenia catharinensis D. Legrand in an animal model of depression induced by corticosterone

Abstract

This work investigated the antioxidant and antidepressant-like effects of ethyl acetate extract from Eugenia catharinensis in mice treated with corticosterone (20 mg/Kg). The animals received saline or corticosterone (21 days) and, in the last 7 days, they were treated with the extract (50, 125, 200 or 250 mg/Kg) or vehicle. After 24 h, the mice were submitted to the open field and forced swimming tests, after which the hippocampus and cerebral cortex were removed. Our results showed that the extract decreased the immobility time of mice in the forced swimming test and that the extract was able to reverse the effect caused by corticosterone. Corticosterone pre-treatment generated oxidative stress, altering antioxidant enzymes in the nervous tissue. The extract increased the catalase and superoxide dismutase activities and reversed the effects of corticosterone. In the hippocampus, the extract increased superoxide dismutase activity and reversed the increase in catalase activity elicited by corticosterone. We propose that the effects elicited by the Eugenia catharinensis are dependent on the presence of phenolic compounds (gallic acid, protocatechuic acid, syringic acid, 4-hydroxy methylbenzoic acid, chlorogenic acid, salicylic acid, caffeic acid, vanillic acid, p-coumaric acid, isoquercetin, rutin, ferulic acid, aromadendrin, galangin and apigenin) in this extract, as demonstrated by HPLC-ESI-MS/MS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abuelezz SA, Hendawy N (2017) Insights into the potential antidepressant mechanisms of cilostazol in chronically restraint rats: impact on the Nrf2 pathway. Behav Pharmacol 1:1–13

    Google Scholar 

  • Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Article  PubMed  Google Scholar 

  • Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    CAS  Article  PubMed  Google Scholar 

  • Bilici M, Efe H, Koroglu MA, Uydu A, Bekaroglu M, Deger O (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64(1):43–51

    CAS  Article  PubMed  Google Scholar 

  • Colla RS, Machado DG, Bettio LEB, Colla G, Magina MDA, Brighente MC, Lu A (2012) Involvement of monoaminergic systems in the antidepressant-like effect of Eugenia brasiliensis lam. (Myrtaceae) in the tail suspension test in mice. J Ethnopharmacol 143(2):720–731

    CAS  Article  PubMed  Google Scholar 

  • de Morais H, de Souza CP, da Silva LM, Ferreira DM, Werner MF, Andreatini R, da Cunha JM, Zanoveli JM (2014) Increased oxidative stress in prefrontal cortex and hippocampus is related to depressive-like behavior in streptozotocin-diabetic rats. Behav Brain Res 1(258):52–64

    Article  Google Scholar 

  • Delwing-de Lima D, Fröhlich M, Dalmedico L, Gruenwaldt J, Aurélio M, Delwing Dal Magro D, Pereira EM, Wyse ATS (2017) Galactose alters markers of oxidative stress and acetylcholinesterase activity in the cerebrum of rats: protective role of antioxidants. Metab Brain Dis 32:359–368

    CAS  Article  PubMed  Google Scholar 

  • Espinosa RR, Inchingolo R, Alencar SM, Rodriguez-Estrada MT, Castro IA (2015) Antioxidant activity of phenolic compounds added to a functional emulsion containing omega-3 fatty acids and plant sterol esters. Food Chem 1(182):95–104

    Article  Google Scholar 

  • Grundmann O, Lv Y, Kelber O, Butterweck V (2010) Mechanism of St. John's wort extract (STW3-VI) during chronic restraint stress is mediated by the interrelationship of the immune, oxidative defense, and neuroendocrine system. Neuropharmacology 58:767–773

    CAS  Article  PubMed  Google Scholar 

  • Levinstein MR, Samuels BA (2014) Mechanisms underlying the antidepressant response and treatment resistance. Front Behav Neurosci 27(8):1–12

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagents. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Magina MA, Gilioli A, Moresco HH, Colla G, Pizzolatti MG, Brighente IMC (2010) Atividade antioxidante de três espécies de Eugenia (Myrtaceae). Lat Am J Pharm 29(3):376–382

    Google Scholar 

  • Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook for oxygen radical research. CRC press, Boca Raton Florida, pp 243–247

    Google Scholar 

  • Neergheen VS, Soobrattee MA, Bahorun T, Aruoma OI (2006) Characterization of the phenolic constituents in Mauritian endemic plants as determinants of their antioxidant activities in vitro. J Plant Physiol 163(8):787–799

    CAS  Article  PubMed  Google Scholar 

  • Ng F, Berk M, Dean O, Bush AL (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11(6):851–876

    CAS  Article  PubMed  Google Scholar 

  • Nikfarjam M, Rakhshan R, Ghaderi H (2017) Comparison of effect of Lavandula officinalis and venlafaxine in treating depression: a double blind clinical trial. J Clin Diagn Res 1(7):KC01–KC04

    Google Scholar 

  • Novack F, De Siqueira A, Savegnago L, João E (2013) Involvement of serotoninergic and adrenergic systems on the antidepressant-like effect of E. uniflora L. leaves essential oil and further analysis of its antioxidant activity. Neurosci Lett 544:105–109

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  Article  PubMed  Google Scholar 

  • Pauleti NN, Melo J, Siebert DA, Micke GA, Albuquerque CAC, Alberton MD, Barauna SC (2017) Characterisation of phenolic compounds of the ethyl acetate fraction from Tabernaemontana catharinensis and its potential antidepressant-like effect. Nat Prod Res 1:1–4

    Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  • Rainer Q, Xia L, Guilloux J, Gabriel C, Mocaer E, Hen R, Enhamre E, Gardier AM, David DJ (2012) Beneficial behavioural and neurogenic effects of agomelatine in a model of depression/anxiety. Int J Neuropsychopharmacol 15(3):321–335

    CAS  Article  PubMed  Google Scholar 

  • Thakare VN, Dhakane VD, Patel BM (2017) Attenuation of acute restraint stress-induced depressive like behavior and hippocampal alterations with protocatechuic acid treatment in mice. Metab Brais Dis 32(2):401–413

    CAS  Article  Google Scholar 

  • Umehara H, Numata S, Watanabe SY, Hatakeyama Y, Kinoshita M, Tomioka Y, Nakahara K, Nikawa T, Ohmori T (2017) Altered KYN/TRP, Gln/Glu, and met/methionine sulfoxide ratios in the blood plasma of medication-free patients with major depressive disorder. Sci Rep 7(1):1–8

    CAS  Article  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    CAS  Article  PubMed  Google Scholar 

  • Weng L, Guo X, Li Y, Yang X, Han Y (2016) Apigenin reverses depression-like behavior induced by chronic corticosterone treatment in mice. Eur J Pharmacol 5(774):50–54

    Article  Google Scholar 

  • World Health Organization, 2017. Depression: let’s talk. Accessed on 02 September 2017, http://who.int/mental_health/management/depression/en/

  • Zafir A, Banu N (2009) Modulation of in vivo oxidative status by exogenous corticosterone and restraint stress in rats. Stress 12(2):167–177

    CAS  Article  PubMed  Google Scholar 

  • Zaki MA, Balachandran P, Khan S, Wang M, Mohammed R, Hetta MH, Pasco DS, Muhammad I (2013) Cytotoxicity and modulation of cancer-related signaling by (Z)- and (E)-3,4,3′,5′-tetramethoxystilbene isolated from Eugenia rigida. J Nat Prod 76(4):679–684

    CAS  Article  PubMed  Google Scholar 

  • Zanoveli JM, de Morais H, Dias IC, Schreiber AK, de Souza CP, da Cunha JM (2016) Depression associated with diabetes: from pathophysiology to treatment. Curr Diabetes Rev 12:165–178

    CAS  Article  PubMed  Google Scholar 

  • Zeni ALB, Camargo A, Dalmagro AP (2017) Ferulic acid reverses depression-like behavior and oxidative stress induced by chronic corticosterone treatment in mice. Steroids 125:131–136

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant number 431280/2016-9), Fundação de Amparo à Pesquisa do Estado de Santa Catarina (grant number 1066/2016), Universidade da Região de Joinville and Universidade Regional de Blumenau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Delwing-De Lima.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barauna, S.C., Delwing-Dal Magro, D., Brueckheimer, M.B. et al. Antioxidant and antidepressant-like effects of Eugenia catharinensis D. Legrand in an animal model of depression induced by corticosterone. Metab Brain Dis 33, 1985–1994 (2018). https://doi.org/10.1007/s11011-018-0306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-018-0306-3

Keywords

  • Myrtaceae
  • Depression
  • Oxidative stress
  • Phenolic compounds