Metabolic Brain Disease

, Volume 33, Issue 2, pp 457–466 | Cite as

Moringa oleifera supplemented diet modulates nootropic-related biomolecules in the brain of STZ-induced diabetic rats treated with acarbose

Original Article
  • 85 Downloads

Abstract

There are strong correlations between diabetes mellitus and cognitive dysfunction. This study sought to investigate the modulatory effects of Moringa oleifera leaf (ML) and seed (MS) inclusive diets on biomolecules [acetylcholinesterase (AChE), butyrylcholinesterase (BChE)] angiotensin-I converting enzyme (ACE), arginase, catalase, glutathione transferase (GST) and glutathione peroxidase (GSH-Px) activities, glutathione (GSH) and nitric oxide (NO) levels] associated with cognitive function in the brain of streptozotocin (STZ)-induced diabetic rats treated with acarbose (ACA). The rats were made diabetic by intraperitoneal administration of 0.1 M sodium-citrate buffer (pH 4.5) containing STZ [60 mg/kg b.w (BW)] and fed with diets containing 2 and 4% ML/MS. Acarbose (25 mg/kg BW) was administered by gavage daily for 14 days. The animals were distributed in eleven groups of eight animals as follows: control, STZ-induced, STZ + ACA, STZ + 2% ML, STZ + ACA + 2% ML, STZ + 4% ML, STZ + ACA + 4% ML, STZ + 2% MS, STZ + ACA + 2% MS, STZ + 4% MS, STZ + ACA + 4% MS. There were marked increase in AChE, BChE, arginase, ACE and concomitant decrease in catalase, GST, GSH-Px, activities and NO levels in STZ-diabetic group compared with the control. However, there was a decrease in AChE, BChE and ACE activities and concomitant increase in the antioxidant molecules in the groups fed with supplemented diets treated with/without ACA compared with the STZ-diabetic group. These findings suggest that ML/MS supplemented diet could prevent cognitive dysfunction-induced by chronic hyperglycemia.

Keywords

Moringa oleifera Diabetes Acarbose Cognitive function Neuromodulation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Adefegha SA, Oboh G, Oyeleye SI, Dada FA, Ejakpovi I, Boligon AA (2017) Cognitive enhancing and antioxidative potentials of velvet beans (Mucuna pruriens) and horseradish (Moringa oleifera) seeds extract: a comparative study. J Food Biochem 41:1–11Google Scholar
  2. Ademiluyi AO, Oyeleye SI, Oboh G (2016) Biological activities, antioxidant properties and phytoconstituents of essential oil from sweet basil (Ocimum basilicum L.) leaves. Comp Clin Pathol 25(1):169–176.  https://doi.org/10.1007/s00580-015-2163-3 CrossRefGoogle Scholar
  3. Ademosun AO, Oboh G, Olupona AJ, Oyeleye SI, Adewuni TM, Nwanna EE (2016) Comparative study of chemical composition, in vitro inhibition of cholinergic and monoaminergic enzymes, and antioxidant potentials of essential oil from peels and seeds of sweet orange (Citrus sinensis [L.] Osbeck) fruits. J Food Biochem 40(1):53–60.  https://doi.org/10.1111/jfbc.12187 CrossRefGoogle Scholar
  4. Akinyemi AJ, Thomé GR, Morsch VM, Bottari NB, Baldissarelli J, Oliveira LS, Goularte JF, Belló-Klein A, Oboh G, Schetinger MRC (2016) Dietary supplementation of ginger and turmeric rhizomes modulates platelets ectonucleotidase and adenosine deaminase activities in normotensive and hypertensive rats. Phytother Res 30(7):1156–1163.  https://doi.org/10.1002/ptr.5621 CrossRefPubMedGoogle Scholar
  5. Akinyemi AJ, Oboh G, Oyeleye SI, Ogunsuyi O (2017) Anti-amnestic effect of curcumin in combination with donepezil, an anticholinesterase drug: involvement of cholinergic system. Neurotox Res 31(4):560–569.  https://doi.org/10.1007/s12640-017-9701-5 CrossRefPubMedGoogle Scholar
  6. Akomolafe SF, Oboh G, Oyeleye SI, Boligon AA (2016) Aqueous extract from Ficus capensis leaves inhibits key enzymes linked to erectile dysfunction and prevent oxidative stress in rats’ penile tissue. NFS J 4:15–21.  https://doi.org/10.1016/j.nfs.2016.06.001 CrossRefGoogle Scholar
  7. Al-Malki AL, El Rabey HA (2015) The antidiabetic effect of low doses of Moringa oleifera lam. Seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. Bioeed Res Int 2015, 381040Google Scholar
  8. Asgar A (2013) Anti-diabetic potential of phenolic compounds: a review. Int J Food Prop 16(1):91–103.  https://doi.org/10.1080/10942912.2011.595864 CrossRefGoogle Scholar
  9. Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45(9):1259–1266.  https://doi.org/10.2337/diab.45.9.1259 CrossRefPubMedGoogle Scholar
  10. Carrizzo A, Di-Pardo A, Maglione V, Damato A, Amico E, Formisano L, Vecchione C, Squitieri F (2014) Nitric oxide dysregulation in platelets from patients with advanced huntington disease. PLoS One 9:89745CrossRefGoogle Scholar
  11. Chang CI, Liao JC, Kuo L (1998) Arginase modulates nitric oxide production in activated macrophages. Am J Physiol 274:342–348Google Scholar
  12. Ciobica A, Bild W, Hritcu L, Haulica I (2009) Brain renin-angiotensin system in cognitive function: pre-clinical findings and implications for prevention and treatment of dementia. Acta Neurol Belg 109:171PubMedGoogle Scholar
  13. Ferreira PMP, Farias DF, Oliveira JTDA, Carvalho ADFU (2008) Moringa oleifera: bioactive compounds and nutritional potential. Rev Nutr 21(4):431–437.  https://doi.org/10.1590/S1415-52732008000400007 CrossRefGoogle Scholar
  14. Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KTS (2015) The role of the nitric oxide pathway in brain injury and its treatment—from bench to bedside. Exp Neurol 63:235–243CrossRefGoogle Scholar
  15. Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23(11):542–549.  https://doi.org/10.1016/S0166-2236(00)01656-8 CrossRefPubMedGoogle Scholar
  16. Guerrero L, Castillo J, Quiñones M, Garcia-Vallvé S, Arola L, Pujadas G, Muguerza B (2012) Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity relationship studies. PLoS One 7(11):49493CrossRefGoogle Scholar
  17. Guoyao WU, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17CrossRefGoogle Scholar
  18. Hasanein P, Shahidi S (2011) Effects of Hypericum perforatum extract on diabetes-induced learning and memory impairment in rats. Phytother Res 25(4):544–549.  https://doi.org/10.1002/ptr.3298 CrossRefPubMedGoogle Scholar
  19. He M, Ohrui T, Maruyama M, Tomita N, Nakayama K, Higuchi M, Furukawa K, Arai H (2006) ACE activity in CSF of patients with mild cognitive impairment and Alzheimer disease. Neurology 67(7):1309–1310.  https://doi.org/10.1212/01.wnl.0000238102.04582.ec CrossRefPubMedGoogle Scholar
  20. International Diabetes Federation (IDF) (2015) IDF Diabetes Atlas, 7th ed. Brussels, Belgium, International Diabetes FederationGoogle Scholar
  21. Jaiswal D, Kumar P, Kumar R, Mehta S, Watal G (2009) Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J Ethnopharmacol 123(3):392–396.  https://doi.org/10.1016/j.jep.2009.03.036 CrossRefPubMedGoogle Scholar
  22. Kan MJ, Lee JE, Wilson JG, Everhart AL, Brown CM, Hoofnagle AN, Jansen M, Vitek MP, Gunn MD, Colton CA (2015) Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease. J Neurosci 35(15):5969–5982.  https://doi.org/10.1523/JNEUROSCI.4668-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, Faull RL, Abraham WC, Zhang H (2014) Altered arginine metabolism in Alzheimer's disease brains. Neurobiol Aging 35(9):1992–2003.  https://doi.org/10.1016/j.neurobiolaging.2014.03.013 CrossRefPubMedGoogle Scholar
  24. Long J, Liu C, Sun L, Gao H, Liu J (2009) Neuronal mitochondrial toxicity of malondialdehyde: inhibitory effects on respiratory function and enzyme activities in rat brain mitochondria. Neurochem Res 34(4):786–794.  https://doi.org/10.1007/s11064-008-9882-7 CrossRefPubMedGoogle Scholar
  25. Manschot SM, Biessels GJ, Cameron NE, Cotter MA, Kamal A, Kappelle LJ, Gispen WH (2003) Angiotensin converting enzyme inhibition partially prevents deficits in water maze performance, hippocampal synaptic plasticity and cerebral blood flow in streptozotocin-diabetic rats. Brain Res 966(2):274–282.  https://doi.org/10.1016/S0006-8993(02)04211-7 CrossRefPubMedGoogle Scholar
  26. Mogi M, Iwanami J, Horiuchi M (2012) Roles of brain angiotensin II in cognitive function and dementia. Int J Hypertens 2012:1–7.  https://doi.org/10.1155/2012/169649 CrossRefGoogle Scholar
  27. National Institute of Health (NIH) (2011) Guide for the care and use of laboratory animals. US. Department of Health Education and Welfare. USA:NIH PublicationGoogle Scholar
  28. Nikolic J, Bjelakovic G, Stojanovic I (2003) Effect of caffeine on metabolism of L-arginine in the brain. In: Clark JF (ed) Guanidino compounds in biology and medicine. Mol Cell Biochem 40:125–128.  https://doi.org/10.1007/978-1-4615-0247-0_181
  29. Oboh G, Ademiluyi AO, Ademosun AO, Olasehinde TA, Oyeleye SI, Boligon AA, Athayde ML (2015) Phenolic extract from Moringa oleifera leaves inhibits key enzymes linked to erectile dysfunction and oxidative stress in rats’ penile tissues. Biochemi Res Inter 2015:1-88.  https://doi.org/10.1155/2015/175950
  30. Oboh G, Ademiluyi AO, Ademosun AO, Olasehinde TA, Oyeleye SI, Boligon AA, Athayde ML (2016a) Phenolic extract from Moringa oleifera leaves inhibits key enzymes linked to erectile dysfunction and oxidative stress in rats’ penile tissues. Biochem Res Int 175950:1–8Google Scholar
  31. Oboh G, Ogunsuyi OB, Ogunbadejo MD, Adefegha SA (2016b) Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. J Food Drug Anal 24(3):627–634.  https://doi.org/10.1016/j.jfda.2016.03.003 CrossRefPubMedGoogle Scholar
  32. Olasehinde TA, Olaniran AO, Okoh AI (2017) Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules 22(3):480.  https://doi.org/10.3390/molecules22030480 CrossRefGoogle Scholar
  33. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Transl Res 70:158–169Google Scholar
  34. Pérez-Severiano F, Escalante B, Vergara P, Ríos C, Segovia J (2002) Age-dependent changes in nitric oxide synthase activity and protein expression in striata of mice transgenic for the Huntington’s disease mutation. Brain Res 951(1):36–42.  https://doi.org/10.1016/S0006-8993(02)03102-5 CrossRefPubMedGoogle Scholar
  35. Pop-Busui R, Sima A, Stevens ML (2006) Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev 22(4):257–273.  https://doi.org/10.1002/dmrr.625 CrossRefPubMedGoogle Scholar
  36. Puca AA, Carrizzo A, Ferrario A, Villa F, Vecchione C (2012) Endothelial nitric oxide synthase, vascular integrity and human exceptional longevity. Immun Ageing 9(1):26.  https://doi.org/10.1186/1742-4933-9-26 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sadeghian R, Fereidoni M, Soukhtanloo M, Azizi-Malekabadi H, Hosseini M (2012) Decreased nitric oxide levels in the hippocampus may play a role in learning and memory deficits in ovariectomized rats treated by a high dose of estradiol. Arq Neuropsiquiatr 70(11):874–879.  https://doi.org/10.1590/S0004-282X2012001100010 CrossRefPubMedGoogle Scholar
  38. Seto SW, Yang GY, Kiat H, Bensoussan A, Kwan YW, Chang D (2015) Diabetes mellitus, cognitive impairment, and traditional Chinese medicine. Int J Endocrinol 2015:810439CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sharma I, Aaradhya M, Kodikonda M, Naik PR (2015) Antihyperglycemic, antihyperlipidemic and antioxidant activity of phenolic rich extract of Brassica oleraceae var gongylodes on streptozotocin induced Wistar rats. Springerplus 4(1):212.  https://doi.org/10.1186/s40064-015-0948-0 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shodehinde SA, Oyeleye SI, Olasehinde TA, Adebayo AA, Oboh G, Boligon AA (2017). Lasianthera Africana leaves inhibits α-amylase α-glucosidase, angiotensin-I converting enzyme activities and Fe 2+- induced oxidative damage in pancreas and kidney homogenates. Oriental Pharm Exp Med 17(1): 41–49Google Scholar
  41. Stewart R, Liolitsa D (1999) Type 2 diabetes mellitus, cognitive impairment and dementia. Diabet Med 16(2):93–112.  https://doi.org/10.1046/j.1464-5491.1999.00027.x CrossRefPubMedGoogle Scholar
  42. Stohs SJ, Hartman MJ (2015) Review of the safety and efficacy of Moringa oleifera. Phytother Res 29(6):796–804.  https://doi.org/10.1002/ptr.5325 CrossRefPubMedGoogle Scholar
  43. Tota S, Kamat PK, Saxena G, Hanif K, Najmi AK, Nath C (2012) Central angiotensin converting enzyme facilitates memory impairment in intracerebroventricular streptozotocin treated rats. Behav Brain Res 226(1):317–330.  https://doi.org/10.1016/j.bbr.2011.07.047 CrossRefPubMedGoogle Scholar
  44. Vural H, Sirin B, Yilmaz N, Eren I, Delibas N (2009) The role of arginine–nitric oxide pathway in patients with Alzheimer disease. Biol Trace Elem Res 129(1-3):58–64.  https://doi.org/10.1007/s12011-008-8291-8 CrossRefPubMedGoogle Scholar
  45. Wright JW, Harding JW (2010) The brain RAS and Alzheimer’s disease. Exp Neurol 223(2):326–333.  https://doi.org/10.1016/j.expneurol.2009.09.012 CrossRefPubMedGoogle Scholar
  46. Xu WL, Von Strauss E, Qiu CX, Winblad B, Fratiglioni L (2009) Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia 52(6):1031–1039.  https://doi.org/10.1007/s00125-009-1323-x CrossRefPubMedGoogle Scholar
  47. Xu X, Guo L, Tian G (2013) Diabetes cognitive impairments and the effect of traditional Chinese herbs. Evid Based Complement Alternat Med 2013:649396PubMedPubMedCentralGoogle Scholar
  48. Zhang C, Hein TW, Wang W, Chang CI, Kuo L (2001) Constitutive expression of arginase in microvascular endothelial cells counteracts nitric oxide-mediated vasodilatory function. FASEB J 15(7):1264–1266.  https://doi.org/10.1096/fj.00-0681fje CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiochemistryFederal University of TechnologyAkureNigeria
  2. 2.Department of Biomedical TechnologyFederal University of TechnologyAkureNigeria
  3. 3.Nutrition and Toxicology Division, Food Technology DepartmentFederal Institute of Industrial ResearchLagosNigeria

Personalised recommendations