Metabolic Brain Disease

, Volume 33, Issue 3, pp 813–821 | Cite as

Effects of progesterone on the neonatal brain following hypoxia-ischemia

  • Rafael Bandeira Fabres
  • Luciana Abreu da Rosa
  • Samir Khal de Souza
  • Ana Lucia Cecconello
  • Amanda Stapenhorst Azambuja
  • Eduardo Farias Sanches
  • Maria Flavia Marques Ribeiro
  • Luciano Stürmer de Fraga
Original Article
  • 135 Downloads

Abstract

Progesterone displays a strong potential for the treatment of neonatal hypoxic-ischemic encephalopathy since it has been shown to be beneficial in the treatment of the central nervous system injuries in adult animals. Here, we evaluated the effects of the administration of progesterone (10 mg/kg) in seven-days-old male Wistar rats submitted to neonatal hypoxia-ischemia (HI). Progesterone was administered immediately before ischemia and/or 6 and 24 h after the onset of hypoxia. The body weight of the animals, the volume of brain lesion and the expression of p-Akt and procaspase-3 in the hippocampus were evaluated. All animals submitted to HI showed a reduction in the body weight. However, this reduction was more remarkable in those animals which received progesterone before surgery. Administration of progesterone was unable to reduce the volume of brain damage caused by HI. Moreover, no significant differences were observed in the expression of p-Akt and procaspase-3 in animals submitted to HI and treated with either progesterone or vehicle. In summary, progesterone did not show a neuroprotective effect on the volume of brain lesion in neonatal rats submitted to hypoxia-ischemia. Furthermore, progesterone was unable to modulate p-Akt and procaspase-3 signaling pathways, which may explain the absence of neuroprotection. On the other hand, it seems that administration of progesterone before ischemia exerts some systemic effect, leading to a remarkable reduction in the body weight.

Keywords

Neonatal hypoxia-ischemia Progesterone Brain injury Akt Caspase-3 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare they have no conflict of interest.

References

  1. Aggarwal R, Medhi B, Pathak A et al (2008) Neuroprotective effect of progesterone on acute phase changes induced by partial global cerebral ischaemia in mice. J Pharm Pharmacol 60:731–737.  https://doi.org/10.1211/jpp.60.6.0008 CrossRefPubMedGoogle Scholar
  2. Anand K, Dhikav V (2012) Hippocampus in health and disease: An overview. Ann Indian Acad Neurol 15:239.  https://doi.org/10.4103/0972-2327.104323 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arbo BD, Andrade S, Osterkamp G et al (2014) Effect of low doses of progesterone in the expression of the GABA(A) receptor α4 subunit and procaspase-3 in the hypothalamus of female rats. Endocrine 46:561–567.  https://doi.org/10.1007/s12020-013-0126-5 CrossRefPubMedGoogle Scholar
  4. Arbo BD, Bennetti F, Ribeiro MF (2016) Astrocytes as a target for neuroprotection: Modulation by progesterone and dehydroepiandrosterone. Prog Neurobiol 144:27–47.  https://doi.org/10.1016/j.pneurobio.2016.03.010 CrossRefPubMedGoogle Scholar
  5. Calvert JW, Yin W, Patel M et al (2002) Hyperbaric oxygenation prevented brain injury induced by hypoxia–ischemia in a neonatal rat model. Brain Res 951:1–8CrossRefPubMedGoogle Scholar
  6. Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321CrossRefPubMedGoogle Scholar
  7. Cavalcante LP, Ferreira SG, Pereira DR, et al (2017) Acute administration of oestradiol or progesterone in a spinal cord ischaemia-reperfusion model in rats. Interact Cardiovasc Thorac Surg 1–6 . doi:  https://doi.org/10.1093/icvts/ivx314
  8. Cendes F (2004) Febrile seizures and mesial temporal sclerosis. Curr Opin Neurol 17:161–164CrossRefPubMedGoogle Scholar
  9. Cervantes M, González-Vidal MD, Ruelas R et al (2002) Neuroprotective effects of progesterone on damage elicited by acute global cerebral ischemia in neurons of the caudate nucleus. Arch Med Res 33:6–14CrossRefPubMedGoogle Scholar
  10. Chen G, Shi J-X, Qi M et al (2008) Effects of Progesterone on Intestinal Inflammatory Response, Mucosa Structure Alterations, and Apoptosis Following Traumatic Brain Injury in Male Rats. J Surg Res 147:92–98.  https://doi.org/10.1016/j.jss.2007.05.029 CrossRefPubMedGoogle Scholar
  11. Chen J, Chopp M, Li Y (1999) Neuroprotective effects of progesterone after transient middle cerebral artery occlusion in rat. J Neurol Sci 171:24–30CrossRefPubMedGoogle Scholar
  12. Djebaili M, Hoffman S, Stein D (2004) Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex. Neuroscience 123:349–359.  https://doi.org/10.1016/j.neuroscience.2003.09.023 CrossRefPubMedGoogle Scholar
  13. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83.  https://doi.org/10.1016/0378-3782(79)90022-7 CrossRefPubMedGoogle Scholar
  14. Dubrovsky B (2006) Neurosteroids, neuroactive steroids, and symptoms of affective disorders. Pharmacol Biochem Behav 84:644–655.  https://doi.org/10.1016/j.pbb.2006.06.016 CrossRefPubMedGoogle Scholar
  15. Fang AY, Gonzalez FF, Sheldon RA, Ferriero DM (2013) Effects of combination therapy using hypothermia and erythropoietin in a rat model of neonatal hypoxia-ischemia. Pediatr Res 73:12–17.  https://doi.org/10.1038/pr.2012.138 CrossRefPubMedGoogle Scholar
  16. Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351:1985–1995.  https://doi.org/10.1056/NEJMra041996 CrossRefPubMedGoogle Scholar
  17. Grobin AC, Heenan EJ, Lieberman JA, Morrow AL (2003) Perinatal neurosteroid levels influence GABAergic interneuron localization in adult rat prefrontal cortex. J Neurosci 23:1832–1839CrossRefPubMedGoogle Scholar
  18. Guerra-Araiza C, Amorim MAR, Pinto-Almazán R et al (2009) Regulation of the phosphoinositide-3 kinase and mitogen-activated protein kinase signaling pathways by progesterone and its reduced metabolites in the rat brain. J Neurosci Res 87:470–481CrossRefPubMedGoogle Scholar
  19. Gunn AJ, Gunn TR, De Haan HH et al (1997) Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J Clin Invest 99:248–256.  https://doi.org/10.1172/JCI119153 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hill M, Parízek A, Bicíková M et al (2000) Neuroactive steroids, their precursors, and polar conjugates during parturition and postpartum in maternal and umbilical blood: 1. Identification and simultaneous determination of pregnanolone isomers. J Steroid Biochem Mol Biol 75:237–244CrossRefPubMedGoogle Scholar
  21. Huang Z, Liu J, Cheung PY, Chen C (2009) Long-term cognitive impairment and myelination deficiency in a rat model of perinatal hypoxic-ischemic brain injury. Brain Res 1301:100–109.  https://doi.org/10.1016/j.brainres.2009.09.006 CrossRefPubMedGoogle Scholar
  22. Hulshof HJ, Novati A, Sgoifo A et al (2011) Maternal separation decreases adult hippocampal cell proliferation and impairs cognitive performance but has little effect on stress sensitivity and anxiety in adult Wistar rats. Behav Brain Res 216:552–560.  https://doi.org/10.1016/j.bbr.2010.08.038 CrossRefPubMedGoogle Scholar
  23. Ishrat T, Sayeed I, Atif F et al (2012) Progesterone is neuroprotective against ischemic brain injury through its effects on the phosphoinositide 3-kinase/protein kinase B signaling pathway. Neuroscience 210:442–450.  https://doi.org/10.1016/j.neuroscience.2012.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kasturi BS, Stein DG (2009) Progesterone decreases cortical and sub-cortical edema in young and aged ovariectomized rats with brain injury. Restor Neurol Neurosci 27:265–275.  https://doi.org/10.3233/RNN-2009-0475 PubMedPubMedCentralGoogle Scholar
  25. Kaur P, Jodhka PK, Underwood WA et al (2007) Progesterone increases brain-derived neuroptrophic factor expression and protects against glutamate toxicity in a mitogen-activated protein kinase- and phosphoinositide-3 kinase-dependent manner in cerebral cortical explants. J Neurosci Res 85:2441–2449CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kim NH, Kim K, Park WS et al (2007) PKB/Akt inhibits ceramide-induced apoptosis in neuroblastoma cells by blocking apoptosis-inducing factor (AIF) translocation. J Cell Biochem 102:1160–1170CrossRefPubMedGoogle Scholar
  27. Lafemina MJ, Sheldon RA, Ferriero DM (2006) Acute hypoxia-ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain. Pediatr Res 59:680–683.  https://doi.org/10.1203/01.pdr.0000214891.35363.6a CrossRefPubMedGoogle Scholar
  28. Lee JA, Il KB, Jo CH et al (2010) Mesenchymal stem-cell transplantation for hypoxic-ischemic brain injury in neonatal rat model. Pediatr Res 67:42–46.  https://doi.org/10.1203/PDR.0b013e3181bf594b CrossRefPubMedGoogle Scholar
  29. Li X, Han H, Hou R et al (2013) Progesterone treatment before experimental hypoxia-ischemia enhances the expression of glucose transporter proteins GLUT1 and GLUT3 in neonatal rats. Neurosci Bull 29:287–294.  https://doi.org/10.1007/s12264-013-1298-y CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li X, Zhang J, Chai S, Wang X (2014) Progesterone alleviates hypoxic - ischemic brain injury via the Akt / GSK - 3 β signaling pathway. Exp Ther Med 8(8):1241–1246.  https://doi.org/10.3892/etm.2014.1858 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li X, Zhang J, Zhu X et al (2015) Progesterone reduces inflammation and apoptosis in neonatal rats with hypoxic ischemic brain damage through the PI3K/Akt pathway. Int J Clin Exp Med 8:8197–8203PubMedPubMedCentralGoogle Scholar
  32. Liu C, Lin N, Wu B, Qiu Y (2009) Neuroprotective effect of memantine combined with topiramate in hypoxic–ischemic brain injury. Brain Res 1282:173–182.  https://doi.org/10.1016/j.brainres.2009.05.071 CrossRefPubMedGoogle Scholar
  33. Loreto M, Mauricio B, Ibeth PP et al (2015) Progesterone regulation of tissue factor depends on MEK1 / 2 activation and requires the proline-rich site on progesterone receptor. Endocrine 48:309–320.  https://doi.org/10.1007/s12020-014-0288-9 CrossRefGoogle Scholar
  34. Luisi S, Petraglia F, Benedetto C et al (2000) Serum allopregnanolone levels in pregnant women: changes during pregnancy, at delivery, and in hypertensive patients. J Clin Endocrinol Metab 85:2429–2433.  https://doi.org/10.1210/jcem.85.7.6675 CrossRefPubMedGoogle Scholar
  35. Martin SS, Perez-Polo JR, Noppens KM, Grafe MR (2005) Biphasic changes in the levels of poly(ADP-ribose) polymerase-1 and caspase 3 in the immature brain following hypoxia-ischemia. Int J Dev Neurosci 23:673–686.  https://doi.org/10.1016/j.ijdevneu.2005.08.002 CrossRefPubMedGoogle Scholar
  36. Murphy SJ, Littleton-Kearney MT, Hurn PD (2002) Progesterone administration during reperfusion, but not preischemia alone, reduces injury in ovariectomized rats. J Cereb Blood Flow Metab 22:1181–1188.  https://doi.org/10.1097/00004647-200210000-00005 CrossRefPubMedGoogle Scholar
  37. Nair VD, Olanow CW (2008) Differential modulation of Akt/glycogen synthase kinase-3beta pathway regulates apoptotic and cytoprotective signaling responses. J Biol Chem 283:15469–15478CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nelson KB, Lynch JK (2004) Stroke in newborn infants. Lancet Neurol 3:150–158.  https://doi.org/10.1016/S1474-4422(04)00679-9 CrossRefPubMedGoogle Scholar
  39. Nguyen PN, Billiards SS, Walker DW, Hirst JJ (2003) Changes in 5-Pregnane Steroids and Neurosteroidogenic Enzyme Expression in Fetal Sheep with Umbilicoplacental Embolization. Pediatr Res 53:956–964.  https://doi.org/10.1203/01.PDR.0000088066.47755.36 CrossRefPubMedGoogle Scholar
  40. Ozacmak VH, Sayan H (2009) The effects of 17beta estradiol, 17alpha estradiol and progesterone on oxidative stress biomarkers in ovariectomized female rat brain subjected to global cerebral ischemia. Physiol Res 58:909–912PubMedGoogle Scholar
  41. Pan D-S, Liu W-G, Yang X-F, Cao F (2007) Inhibitory effect of progesterone on inflammatory factors after experimental traumatic brain injury. Biomed Environ Sci 20:432–438PubMedGoogle Scholar
  42. Peterson BL, Won S, Geddes RI et al (2015) Sex-related differences in effects of progesterone following neonatal hypoxic brain injury. Behav Brain Res 286:152–165.  https://doi.org/10.1016/j.bbr.2015.03.005 CrossRefPubMedGoogle Scholar
  43. Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141CrossRefPubMedGoogle Scholar
  44. Robertson GS, Crocker SJ, Nicholson DW, Schulz JB (2000) Neuroprotection by the Inhibition of Apoptosis. Brain Pathol 10:283–292CrossRefPubMedGoogle Scholar
  45. Rupprecht R (2003) Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology 28:139–168CrossRefPubMedGoogle Scholar
  46. Sabir H, Osredkar D, Maes E et al (2016) Xenon combined with therapeutic hypothermia is not neuroprotective after severe hypoxia-ischemia in neonatal rats. PLoS One 11:1–10.  https://doi.org/10.1371/journal.pone.0156759 CrossRefGoogle Scholar
  47. Sabir H, Scull-Brown E, Liu X, Thoresen M (2012) Immediate hypothermia is not neuroprotective after severe hypoxia-ischemia and is deleterious when delayed by 12 hours in neonatal rats. Stroke 43:3364–3370.  https://doi.org/10.1161/STROKEAHA.112.674481 CrossRefPubMedGoogle Scholar
  48. Sabir H, Walløe L, Dingley J et al (2014) Combined treatment of Xenon and hypothermia in newborn rats - Additive or synergistic effect? PLoS One 9:1–7.  https://doi.org/10.1371/journal.pone.0109845 Google Scholar
  49. Sanches EF, Arteni NS, Nicola F et al (2013) Early hypoxia-ischemia causes hemisphere and sex-dependent cognitive impairment and histological damage. Neuroscience.  https://doi.org/10.1016/j.neuroscience.2013.01.066
  50. Sarkaki AR, Khaksari Haddad M, Soltani Z et al (2013) Time- and dose-dependent neuroprotective effects of sex steroid hormones on inflammatory cytokines after a traumatic brain injury. J Neurotrauma 30:47–54.  https://doi.org/10.1089/neu.2010.1686 CrossRefPubMedGoogle Scholar
  51. Shahrokhi N, Khaksari M, Soltani Z et al (2010) Effect of sex steroid hormones on brain edema, intracranial pressure, and neurologic outcomes after traumatic brain injury. Can J Physiol Pharmacol 88:414–421.  https://doi.org/10.1139/y09-126 CrossRefPubMedGoogle Scholar
  52. Shankaran S, Laptook AR, Ehrenkranz RA et al (2005) Whole-Body Hypothermia for Neonates with Hypoxic–Ischemic Encephalopathy. N Engl J Med 353:1574–1584.  https://doi.org/10.1056/NEJMcps050929 CrossRefPubMedGoogle Scholar
  53. Springer JE, Nottingham SA, McEwen ML et al (2001) Caspase-3 Apoptotic Signaling Following Injury to the Central Nervous System. Clin Chem Lab Med 39.  https://doi.org/10.1515/CCLM.2001.046
  54. Stein DG (2008) Progesterone exerts neuroprotective effects after brain injury. Brain Res Rev 57:386–397.  https://doi.org/10.1016/j.brainresrev.2007.06.012 CrossRefPubMedGoogle Scholar
  55. Sun Y, Zhou C, Polk P et al (2004) Mechanisms of erythropoietin-induced brain protection in neonatal hypoxia-ischemia rat model. J Cereb Blood Flow Metab 24:259–270.  https://doi.org/10.1097/01.WCB.0000110049.43905.AC CrossRefPubMedGoogle Scholar
  56. Taniguchi H, Andreasson K (2008) The hypoxic-ischemic encephalopathy model of perinatal ischemia. J Vis Exp 21:1–2.  https://doi.org/10.3791/955 Google Scholar
  57. Tsuji M, Aoo N, Harada K et al (2010) Sex differences in the benefits of rehabilitative training during adolescence following neonatal hypoxia-ischemia in rats. Exp Neurol 226:285–292.  https://doi.org/10.1016/j.expneurol.2010.09.002 CrossRefPubMedGoogle Scholar
  58. Tsuji M, Taguchi A, Ohshima M et al (2012) Progesterone and allopregnanolone exacerbate hypoxic-ischemic brain injury in immature rats. Exp Neurol 233:214–220CrossRefPubMedGoogle Scholar
  59. van der Kooij MA, Ohl F, Arndt SS et al (2010) Mild neonatal hypoxia–ischemia induces long-term motor- and cognitive impairments in mice. Brain Behav Immun 24:850–856.  https://doi.org/10.1016/j.bbi.2009.09.003 CrossRefPubMedGoogle Scholar
  60. Wang JM, Singh C, Liu L et al (2010) Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 107:6498–6503.  https://doi.org/10.1073/pnas.1001422107 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–26CrossRefPubMedGoogle Scholar
  62. Wang X, Karlsson JO, Zhu C et al (2001) Caspase-3 activation after neonatal rat cerebral hypoxia-ischemia. Biol Neonate 79:172–179.  https://doi.org/10.1159/000047087 CrossRefPubMedGoogle Scholar
  63. Wang X, Zhang J, Yang Y et al (2013) Progesterone attenuates cerebral edema in neonatal rats with hypoxic-ischemic brain damage by inhibiting the expression of matrix metalloproteinase-9 and aquaporin-4. Exp Ther Med 6:263–267.  https://doi.org/10.3892/etm.2013.1116 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wood T, Osredkar D, Puchades M et al (2016) Treatment temperature and insult severity influence the neuroprotective effects of therapeutic hypothermia. Sci Rep 6:23430.  https://doi.org/10.1038/srep23430 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yakovlev AG, Faden AI (2001) Caspase-Dependent Apoptotic Pathways in CNS Injury. Mol Neurobiol 24:131–144.  https://doi.org/10.1385/MN:24:1-3:131 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rafael Bandeira Fabres
    • 1
    • 2
    • 3
    • 4
  • Luciana Abreu da Rosa
    • 3
  • Samir Khal de Souza
    • 2
    • 3
  • Ana Lucia Cecconello
    • 1
    • 3
  • Amanda Stapenhorst Azambuja
    • 1
    • 3
  • Eduardo Farias Sanches
    • 5
  • Maria Flavia Marques Ribeiro
    • 1
    • 3
  • Luciano Stürmer de Fraga
    • 2
    • 3
    • 4
  1. 1.Laboratory of Neurohumoral Interaction, Department of PhysiologyUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Laboratory of Comparative Metabolism and Endocrinology, Department of PhysiologyUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  3. 3.Programa de Pós-Graduação em Ciências Biológicas: FisiologiaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  4. 4.Hospital de Clínicas de Porto Alegre (HCPA)Porto AlegreBrazil
  5. 5.Laboratory of Cerebral Ischemia, Department of BiochemistryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations