Metabolic Brain Disease

, Volume 33, Issue 3, pp 647–660 | Cite as

The role of tryptophan metabolism in postpartum depression

  • Kai-Ming Duan
  • Jia-Hui Ma
  • Sai-Ying Wang
  • ZhengDong Huang
  • YingYong Zhou
  • HeYa Yu
Review Article
  • 416 Downloads

Abstract

The Postpartum depression (PPD) is the most common postpartum psychiatric disorder, afflicting approximately 10%–20% of new mothers. Clinical symptoms of the PPD include depressive disorder, agitation, insomnia, anxiety and confusion, resulting in an increase in suicidal tendencies, thereby having significant impacts on the puerpera, newborn and their family. A growing body of data indicate a role for alterations in tryptophan metabolism in the PPD. The metabolism of tryptophan produces an array of crucial factors that can differentially regulate key physiological processes linked to the PPD. Importantly, an increase in stress hormones and immune-inflammatory activity drives tryptophan to the production of neuroregulatory kynurenine pathway products and away from the serotonin and melatonin pathways. This links the PPD to other disorders of depressed mood, which are classically associated with decreased serotonin and melatonin, coupled to increases in kynurenine pathway products. Several kynurenine pathway products, such as kynurenic acid and quinolinic acid, can have neuroregulatory effects, with consequences pathological underpinnings of the PPD. The current article reviews the role of alterations in tryptophan metabolism in the PPD.

Keywords

Postpartum depression Tryptophan metabolism Serotonin pathway Kynurenine pathway 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81302852, 81573508).

Author Contributions

Authors Sai-Ying Wang and HeYa Yu managed the literature searches and analyses. Authors Jia-Hui Ma,ZhengDong Huang and YingYong Zhou undertook the statistical analysis, and author Kai-Ming Duan wrote the first draft of the manuscript. All authors contributed to and have approved the final manuscript.

References

  1. Adachi N, Ogasawara T, Nishijima M (1990) Tryptophan etabolism during the perinatal period. Nihon Sanka Fujinka Gakkai Zasshi 42(9):1203–1210PubMedGoogle Scholar
  2. Alvim-Soares A, Miranda D, Campos SB, Figueira P, Romano-Silva MA, Correa H (2013) Postpartum depression symptoms associated with val158met comt polymorphism. Arch Womens Ment Health 16(4):339–340PubMedCrossRefGoogle Scholar
  3. Anderson, G (2018) Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog Neuropsychopharmacol Biol Psychiatry 80(Pt C):255–266Google Scholar
  4. Anderson G, Maes M (2017a) How Immune-inflammatory processes link CNS and psychiatric disorders: Classification and Treatment Implications. CNS Neurol Disord Drug Targets 16(3):266–278Google Scholar
  5. Anderson G, Maes M (2017b) Interactions of Tryptophan and Its Catabolites With Melatonin and the Alpha 7 Nicotinic Receptor in Central Nervous System and Psychiatric Disorders: Role of the Aryl Hydrocarbon Receptor and Direct Mitochondria Regulation. Int J Tryptophan Res 10:1178646917691738PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anderson G, Maes M (2014) Oxidative/nitrosative stress and immuno-inflammatory pathways in depression: treatment implications. Curr Pharm Des 20(23):3812–3847PubMedCrossRefGoogle Scholar
  7. Anderson G, Berk M, Maes M (2014) Biological phenotypes underpin the physio-somatic symptoms of somatization, depression, and chronic fatigue syndrome. Acta Psychiatr Scand 29(2):83–97CrossRefGoogle Scholar
  8. Anderson G, Maes M (2013) Postpartum depression: psychoneuroimmunological underpinnings and treatment. Neuropsychiatr Dis Treat 9(9):277–287PubMedPubMedCentralCrossRefGoogle Scholar
  9. Andersson L, Sundström-Poromaa I, Wulff M, Åström M, Bixo M (2006) Depression and anxiety during pregnancy and six months postpartum: a follow-up study. Acta Obstet Gynecol Scand 85(8):937–944PubMedCrossRefGoogle Scholar
  10. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF et al (2011) Nmda receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475(7354):91–95PubMedPubMedCentralCrossRefGoogle Scholar
  11. Badawy AA (2015) Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep 35(5):e00261PubMedPubMedCentralCrossRefGoogle Scholar
  12. Badawy AA (2014) The tryptophan utilization concept in pregnancy. Obstet Gynecol Sci 57(4):249–259PubMedPubMedCentralCrossRefGoogle Scholar
  13. Badawy AA (1988) Effects of pregnancy on tryptophan metabolism and disposition in the rat. Biochem J 255(1):369–372PubMedPubMedCentralGoogle Scholar
  14. Baïlara KM, Henry C, Lestage J, Launay JM, Parrot F, Swendsen J et al (2006) Decreased brain tryptophan availability as a partial determinant of post-partum blues. Psychoneuroendocrinology 31(3):407–413PubMedCrossRefGoogle Scholar
  15. Bender DA (1983) Biochemistry of tryptophan in health and disease. Mol Asp Med 6(2):101–197CrossRefGoogle Scholar
  16. Bethea CL, Reddy AP, Tokuyama Y, Henderson JA, Lima FB (2009) Protective actions of ovarian hormones in the serotonin system of macaques. Front Neuroendocrinol 30(2):212–238PubMedPubMedCentralCrossRefGoogle Scholar
  17. Boufidou F, Lambrinoudaki I, Argeitis J, Zervas IM, Pliatsika P, Leonardou AA et al (2009) Csf and plasma cytokines at delivery and postpartum mood disturbances. J Affect Disord 115(1–2):287–292PubMedCrossRefGoogle Scholar
  18. Bradley KAL, Case JAC, Khan O, Ricart T, Hanna A, Alonso CM et al (2015) The role of the kynurenine pathway in suicidality in adolescent major depressive disorder. Psychiatry Res 227(2–3):206–212PubMedPubMedCentralCrossRefGoogle Scholar
  19. Catalani A, Casolini P, Scaccianoce S, Patacchioli FR, Spinozzi P, Angelucci L (2000) Maternal corticosterone during lactation permanently affects brain corticosteroid receptors, stress response and behaviour in rat progeny. Neuroscience 100(2):319–325PubMedCrossRefGoogle Scholar
  20. Chopra K, Kumar B, Kuhad A (2011) Pathobiological targets of depression. Expert Opin Ther Targets 15(4):379–400PubMedCrossRefGoogle Scholar
  21. Craig M, Howard LM (2009) Postnatal depression. Clin Evid 2009(93):1294–1296Google Scholar
  22. Claes S, Myint AM, Domschke K, Del-Favero J, Entrich K, Engelborghs S et al (2011) The kynurenine pathway in major depression: haplotype analysis of three related functional candidate genes. Psychiatry Res 188(3):355–360PubMedCrossRefGoogle Scholar
  23. Combes V, Guillemin GJ, Chan-Ling T, Hunt NH, Grau GER (2012) The crossroads of neuroinflammation in infectious diseases: endothelial cells and astrocytes. Trends Parasitol 28(8):311–319PubMedCrossRefGoogle Scholar
  24. Connor TJ, Starr N, O'Sullivan JB, Harkin A (2008) Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for ifn-γ?. Neurosci Lett 441(1):29–34Google Scholar
  25. Coppen A, Shaw DM, Malleson A (1965) Changes in 5-hydroxytryptophan metabolism in depression. Br J Psychiatry 111:105–107PubMedCrossRefGoogle Scholar
  26. Cutler JA, Rush AJ, Mcmahon FJ, Laje G (2012) Common genetic variation in the indoleamine-2,3-dioxygenase genes and antidepressant treatment outcome in major depressive disorder. J Psychopharmacol 26(3):360–367PubMedCrossRefGoogle Scholar
  27. Doornbos B, Dijck-Brouwer DAJ, Kema IP, Tanke MAC, Goor SAV, Muskiet FAJ et al (2009) The development of peripartum depressive symptoms is associated with gene polymorphisms of maoa, 5-htt and comt. Prog Neuro-Psychopharmacol Biol Psychiatry 33(7):1250–1254CrossRefGoogle Scholar
  28. El-Ibiary SY, Hamilton SP, Abel R, Erdman CA, Robertson PA, Finley PR (2013) A pilot study evaluating genetic and environmental factors for postpartum depression. Innov Clin Neurosci 10(9–10):15–22PubMedPubMedCentralGoogle Scholar
  29. Ellenbogen MA, Young SN, Dean P, Palmour RM, Benkelfat C (1999) Acute tryptophan depletion in healthy young women with a family history of major affective disorder. Psychol Med 29(1):35–46PubMedCrossRefGoogle Scholar
  30. Engqvist I, Ferszt G, Åhlin A, Nilsson K (2009) Psychiatric nurses' descriptions of women with postpartum psychosis and nurses' responses—an exploratory study in sweden. Issues Ment Health Nurs 30(1):23–30PubMedCrossRefGoogle Scholar
  31. Epperson CN, Jatlow PI, Czarkowski K, Anderson GM (2003) Maternal fluoxetine treatment in the postpartum period: effects on platelet serotonin and plasma drug levels in breastfeeding mother-infant pairs. Pediatrics 112(5):e425–e425PubMedCrossRefGoogle Scholar
  32. Erhardt S, Schwieler L, Imbeault S, Engberg G (2016) The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology 112(Pt B):297–306Google Scholar
  33. Fallon V, Groves R, Halford JC, Bennett KM, Harrold JA (2016) Postpartum anxiety and infant-feeding outcomes. J Hum Lact 32(4):740–758PubMedCrossRefGoogle Scholar
  34. Figueiredo FP, Parada AP, Araujo LFD, Silva WA Jr, Del-Ben CM (2015) The influence of genetic factors on peripartum depression: a systematic review. J Affect Disord 172:265–273PubMedCrossRefGoogle Scholar
  35. Gao X, Jing W, Hong Y, Yan C, Cheng R (2016) Serum bdnf concentration after delivery is associated with development of postpartum depression: a 3-month follow up study. J Affect Disord 200:25–30PubMedCrossRefGoogle Scholar
  36. Gard PR, Handley SL, Parsons AD, Waldron G (1986) A multivariate investigation of postpartum mood disturbance. Br J Psychiatry J Ment Sci 148(5):567–575CrossRefGoogle Scholar
  37. Gaynes BN, Gavin N, Meltzerbrody S, Lohr KN, Swinson T, Gartlehner G et al (2005) Perinatal depression: prevalence, screening accuracy, and screening outcomes. Evid Rep Technol Assess 119(119):1–8Google Scholar
  38. Gibney SM, Fagan EM, Waldron AM, O'Byrne J, Connor TJ, Harkin A (2014) Inhibition of stress-induced hepatic tryptophan 2,3-dioxygenase exhibits antidepressant activity in an animal model of depressive behaviour. Int J Neuropsychopharmacol 17(6):1–12CrossRefGoogle Scholar
  39. Gibney SM, Mcguinness B, Prendergast C, Harkin A, Connor TJ (2013) Poly i:c-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced bdnf expression. Brain Behav Immun 28(3):170–181PubMedCrossRefGoogle Scholar
  40. Gleeson LC, Ryan KJ, Griffin ÉW, Connor TJ, Harkin A (2010) The β 2 -adrenoceptor agonist clenbuterol elicits neuroprotective, anti-inflammatory and neurotrophic actions in the kainic acid model of excitotoxicity. Brain Behav Immun 24(8):1354–1361PubMedCrossRefGoogle Scholar
  41. Goebel-Goody SM, Baum M, Paspalas CD, Fernandez SM, Carty NC, Kurup P et al (2012) Therapeutic implications for striatal-enriched protein tyrosine phosphatase (step) in neuropsychiatric disorders. Pharmacol Rev 64(1):65–87PubMedPubMedCentralCrossRefGoogle Scholar
  42. Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M et al (2000) 3-hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry 39(24):7266–7275PubMedCrossRefGoogle Scholar
  43. Han Q, Cai T, Tagle DA, Li J (2010) Han q, cai t, tagle da, li j. structure, expression, and function of kynurenine aminotransferases in human and rodent brains. cell mol life sci 67: 353-368. Cell Mol Life Sci 67(3):353–368PubMedCrossRefGoogle Scholar
  44. Handley SL, Dunn TL, Baker JM, Cockshott C, Gould S (1977) Mood changes in puerperium, and plasma tryptophan and cortisol concentrations. Br Med J 2(6078):18–20PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hedner T, Lundborg P (1980) Serotoninergic development in the postnatal rat brain. J Neural Transm 49(4):257–279PubMedCrossRefGoogle Scholar
  46. Jang SW, Liu X, Pradoldej S, Tosini G, Chang Q, Iuvone PM et al (2010) N-acetylserotonin activates TrkB receptor in a circadian rhythm. Proc Natl Acad Sci U S A 107(8):3876–3881PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jo WK, Zhang Y, Emrich HM, Dietrich DE (2015) Glia in the cytokine-mediated onset of depression: fine tuning the immune response. Front Cell Neurosci 9(8):268Google Scholar
  48. Josefsson A, Angelsiöö L, Berg G, Ekström CM, Gunnervik C, Nordin C et al (2002) Obstetric, somatic, and demographic risk factors for postpartum depressive symptoms. Obstet Gynecol 99(2):223–228PubMedGoogle Scholar
  49. Josefsson A, Berg G, Nordin C, Sydsjö G (2001) Prevalence of depressive symptoms in late pregnancy and postpartum. Acta Obstet Gynecol Scand 80(3):251–255PubMedCrossRefGoogle Scholar
  50. Jr LIJ (1992) Serotonin and psychiatric disorders. Int Clin Psychopharmacol 7(Suppl 2):5–11Google Scholar
  51. Kaura V, Ingram CD, Gartside SE, Young AH, Judge SJ (2007) The progesterone metabolite allopregnanolone potentiates gaba a, receptor-mediated inhibition of 5-ht neuronal activity. Eur Neuropsychopharmacol 17(2):108–115PubMedCrossRefGoogle Scholar
  52. Kim DR, Epperson CN, Weiss AR, Wisner KL (2014) Pharmacotherapy of postpartum depression: an update. Expert Opin Pharmacother 15(9):1223–1234PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kohl C, Walch T, Huber R, Kemmler G, Neurauter G, Fuchs D et al (2005) Measurement of tryptophan, kynurenine and neopterin in women with and without postpartum blues. J Affect Disord 86(2–3):135–142PubMedCrossRefGoogle Scholar
  54. Lancellotti S, Novarese L, De CR (2011) Biochemical properties of indoleamine 2,3-dioxygenase: from structure to optimized design of inhibitors. Curr Med Chem 18(15):2205–2214PubMedCrossRefGoogle Scholar
  55. Laugeray A, Launay JM, Callebert J, Surget A, Belzung C, Barone PR (2010) Peripheral and cerebral metabolic abnormalities of the tryptophan–kynurenine pathway in a murine model of major depression. Behav Brain Res 210(1):84–91PubMedCrossRefGoogle Scholar
  56. Lee H, Ohno M, Ohta S, Mikami T (2013) Regular moderate or intense exercise prevents depression-like behavior without change of hippocampal tryptophan content in chronically tryptophan-deficient and stressed mice. PLoS One 8(7):e66996PubMedPubMedCentralCrossRefGoogle Scholar
  57. Leung BM, Kaplan BJ (2009) Perinatal depression: prevalence, risks, and the nutrition link--a review of the literature. J Am Diet Assoc 109(9):1566–1575PubMedCrossRefGoogle Scholar
  58. Lewis DO (1974) The pharmacodynamics of depression and its relation to therapy. Br J Clin Pract 28(1):21–27PubMedGoogle Scholar
  59. Logsdon MC, Usui W (2001) Psychosocial predictors of postpartum depression in diverse groups of women. West J Nurs Res 23(23):563–574PubMedCrossRefGoogle Scholar
  60. Lommatzsch M, Hornych K, Zingler C, Schuff-Werner P, Höppner J, Virchow JC (2006) Maternal serum concentrations of bdnf and depression in the perinatal period. Psychoneuroendocrinology 31(3):388–394PubMedCrossRefGoogle Scholar
  61. Lovelace MD, Varney B, Sundaram G, Lennon MJ, Chai KL, Jacobs K, et al (2017) Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology 112(Pt B):373–388Google Scholar
  62. Luthman J, Radesäter AC, Oberg C (1998) Effects of the 3-hydroxyanthranilic acid analogue ncr-631 on anoxia-, il-1 beta- and lps-induced hippocampal pyramidal cell loss in vitro. Amino Acids 14(1–3):263–269PubMedCrossRefGoogle Scholar
  63. Lin YMJ, Ko HC, Chang FM, Yeh TL, Sun HS (2009) Population-specific functional variant of the tph2 gene 2755c>a polymorphism contributes risk association to major depression and anxiety in chinese peripartum women. Arch Womens Ment Health 12(6):401–408PubMedCrossRefGoogle Scholar
  64. Maddison DC, Giorgini F (2015) The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 40:134–141PubMedCrossRefGoogle Scholar
  65. Maes M, Verkerk R, Bonaccorso S, Ombelet W, Bosmans E, Scharpé S (2002) Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation. Life Sci 71(16):1837Google Scholar
  66. Mallikarjun PK, Oyebode F (2005) Prevention of postnatal depression. J R Soc Promot Heal 125(5):854Google Scholar
  67. Mann R, Gilbody S, Adamson J (2010) Prevalence and incidence of postnatal depression: what can systematic reviews tell us? Arch Womens Ment Health 13(4):295–305PubMedCrossRefGoogle Scholar
  68. Miller LJ (2002) Postpartum depression. JAMA 287(6):762–765PubMedCrossRefGoogle Scholar
  69. Miller OH, Yang L, Wang CC, Hargroder EA, Zhang Y, Delpire E et al (2014) Glun2b-containing nmda receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. Elife Sci 3(3):e03581Google Scholar
  70. Mo X, Pi L, Yang J, Xiang Z, Tang A (2013) Serum indoleamine 2,3-dioxygenase and kynurenine aminotransferase enzyme activity in patients with ischemic stroke. J Clin Neurosci 21(3):482–486PubMedCrossRefGoogle Scholar
  71. Moses-Kolko EL, Wisner KL, Price JC, Berga SL, Drevets WC, Hanusa BH et al (2008) Serotonin 1a receptor reductions in postpartum depression: a positron emission tomography study. Fertil Steril 89(3):685–692PubMedCrossRefGoogle Scholar
  72. Müller N (2014) Immunology of major depression. Neuroimmunomodulation 21(21):123–130PubMedCrossRefGoogle Scholar
  73. Myint AM, Kim YK (2014) Network beyond ido in psychiatric disorders: revisiting neurodegeneration hypothesis. Prog Neuro-Psychopharmacol Biol Psychiatry 48(1433):304–313CrossRefGoogle Scholar
  74. Myint AM, Schwarz MJ, Müller N (2012) The role of the kynurenine metabolism in major depression. J Neural Transm 119(2):245–251Google Scholar
  75. Mitchell C, Notterman D, Brooks-Gunn J, Hobcraft J, Garfinkel I, Jaeger K et al (2011) Role of mother's genes and environment in postpartum depression. Proc Natl Acad Sci 108(20):8189–8193PubMedPubMedCentralCrossRefGoogle Scholar
  76. Németh H, Toldi J, Vécsei L (2005) Role of kynurenines in the central and peripheral nervous systems. Curr Neurovasc Res 2(3):249–260PubMedCrossRefGoogle Scholar
  77. Newport JD, Owens MJ, Knight DL et al (2004) Alterations in platelet serotonin transporter binding in women with postpartum onset major depression. J Psychiatr Res 38(5):467–473PubMedCrossRefGoogle Scholar
  78. Nongonierma AB, Fitzgerald RJ (2015) Milk proteins as a source of tryptophan-containing bioactive peptides. Food Funct 6(7):2115–2127PubMedCrossRefGoogle Scholar
  79. Ogawa S, Fujii T, Koga N, Hori H, Teraishi T, Hattori K, Noda T, Higuchi T, Motohashi N, Kunugi H (2014) Plasma l-tryptophan concentration in major depressive disorder: new data and meta-analysis. J Clin Psychiatry 75(9):906–915CrossRefGoogle Scholar
  80. Oliveira RM, Guimarães FS, Deakin JF (2008) Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders. Braz J Med Biol Res 41(4):333–341PubMedCrossRefGoogle Scholar
  81. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48PubMedCrossRefGoogle Scholar
  82. Owe-Young R, Webster NL, Mukhtar M, Pomerantz RJ, Smythe G, Walker D et al (2008) Kynurenine pathway metabolism in human blood–brain–barrier cells: implications for immune tolerance & neurotoxicity. J Neurochem 105(4):1346–1357PubMedCrossRefGoogle Scholar
  83. Oxenkrug G (2013) Serotonin – kynurenine hypothesis of depression: historical overview and recent developments. Curr Drug Targets 14(5):514–521PubMedPubMedCentralCrossRefGoogle Scholar
  84. Oxenkrug GF (2011) Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J Neural Transm 118(1):75–85PubMedCrossRefGoogle Scholar
  85. Oxenkrug GF (2010) Tryptophan kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci 47(1):56–63PubMedPubMedCentralGoogle Scholar
  86. Oxenkrug GF (2007) Genetic and hormonal regulation of tryptophan–kynurenine metabolism. Ann N Y Acad Sci 1122(1):35–49PubMedCrossRefGoogle Scholar
  87. Parrott JM, O’Connor JC (2014) Kynurenine 3-monooxygenase: an influential mediator of neuropathology. Front Psych 6:116Google Scholar
  88. Paul K, Boutain D, Agnew K, Thomas J, Hitti J (2008) The relationship between racial identity, income, stress and c-reactive protein among parous women: implications for preterm birth disparity research. J Natl Med Assoc 100(5):540–546PubMedCrossRefGoogle Scholar
  89. Qin X, Liu JY, Wang T, Pashley DH, Al-Hashim AH, Abdelsayed R, et al (2017) Role of indoleamine 2,3-dioxygenase in an inflammatory model of murine gingiva. J Periodontal Res 52(1):107–113Google Scholar
  90. Quak J, Doornbos B, Roest AM, Duivis HE, Vogelzangs N, Nolen WA et al (2014) Does tryptophan degradation along the kynurenine pathway mediate the association between pro-inflammatory immune activity and depressive symptoms? Psychoneuroendocrinology 45(5):202–210PubMedCrossRefGoogle Scholar
  91. Rc VDM, Fekkes D (2000) Serotonin and amino acids: partners in delirium pathophysiology? Semin Clin Neuropsychiatry 5(2):125–131Google Scholar
  92. Roomruangwong C, Kanchanatawan B, Sirivichayakul S, Anderson G, Carvalho AF, Duleu S et al (2017) Iga/igm responses to tryptophan and tryptophan catabolites (trycats) are differently associated with prenatal depression, physio-somatic symptoms at the end of term and premenstrual syndrome. Mol Neurobiol 54(4):3038–3049PubMedCrossRefGoogle Scholar
  93. Roth A, Griffin DE (2010) Hypoxia abrogates antichlamydial properties of ifn-y in human fallopian tube cells in vitro and ex vivo. Proc Natl Acad Sci U S A 107(45):19502–19507PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sacher J, Rekkas PV, Wilson AA, Houle S, Romano L, Hamidi J et al (2015) Relationship of monoamine oxidase-A distribution volume to postpartum depression and postpartum crying. Neuropsychopharmacology 40(2):429–435PubMedCrossRefGoogle Scholar
  95. Schnieder TP, Trencevska I, Rosoklija G, Stankov A, Mann JJ, Smiley J et al (2014) Microglia of prefrontal white matter in suicide. J Neuropathol Exp Neurol 73(9):880–890PubMedPubMedCentralCrossRefGoogle Scholar
  96. Schrocksnadel K, Widner B, Bergant A, Neurauter G, Schennach H, Schrocksnadel H et al (2003a) Longitudinal study of tryptophan degradation during and after pregnancy. Life Sci 72(72):785–793PubMedCrossRefGoogle Scholar
  97. Schröcksnadel K, Widner B, Neurauter G, Fuchs D, Schröcksnadel H, Bergant A (2003b) Tryptophan Degradation During And After Gestation. Developments in Tryptophan and Serotonin Metabolism. Springer US 527:77–83Google Scholar
  98. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13(7):465–477PubMedPubMedCentralCrossRefGoogle Scholar
  99. Scrandis DA, Langenberg P, Tonelli LH, Sheikh TM, Manogura AC, Alberico LA et al (2008) Prepartum depressive symptoms correlate positively with c-reactive protein levels and negatively with tryptophan levels: a preliminary report. Int J Child Health Hum Dev 1(2):167–174PubMedPubMedCentralGoogle Scholar
  100. Sedlmayr P, Blaschitz A, Stocker R (2014) The role of placental tryptophan catabolism. Front Immunol 5(6):230PubMedPubMedCentralGoogle Scholar
  101. Skalkidou A, Hellgren C, Comasco E, Sylvén S, Poromaa IS (2012) Biological aspects of postpartum depression. Women Health 8(6):659–672CrossRefGoogle Scholar
  102. Ślusarczyk J, Trojan E, Głombik K, Budziszewska B, Kubera M, Lasoń W et al (2015) Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci 9:82PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sobczak S, Honig A, Riedel WJ (2000) Acute tryptophan depletion in bipolar disorders; literature review and directives for further research. Acta Neuropsych 12(3):69–72CrossRefGoogle Scholar
  104. Tan L, Yu JT, Tan L (2012) The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J Neurol Sci 323(1–2):1–8PubMedCrossRefGoogle Scholar
  105. Tang J, Xue W, Xia B, Li R, Tao W, Chen C et al (2015) Involvement of normalized nmda receptor and mtor-related signaling in rapid antidepressant effects of yueju and ketamine on chronically stressed mice. Sci Rep 5(5):338–341Google Scholar
  106. Thevandavakkam MA, Schwarcz R, Muchowski PJ, Giorgini F (2010) Targeting kynurenine 3-monooxygenase (kmo): implications for therapy in huntington's disease. CNS Neurol Disord Drug Targets 9(6):791–800PubMedCrossRefGoogle Scholar
  107. Tricklebank MD, Pickard FJ, Souza SWD (1979) Free and bound tryptophan in human plasma during the perinatal period. Acta Paediatr Scand 68(2):199–204PubMedCrossRefGoogle Scholar
  108. Veen C, Myint AM, Burgerhout KM, Schwarz MJ, Schütze G, Kushner SA et al (2016) Tryptophan pathway alterations in the postpartum period and in acute postpartum psychosis and depression. J Affect Disord 189:298–305PubMedCrossRefGoogle Scholar
  109. Wald MF, Muzyk AJ, Clark D (2016) Bipolar depression: pregnancy, postpartum, and lactation. Psychiatr Clin N Am 39(1):57–74CrossRefGoogle Scholar
  110. Wang CC, Held RG, Chang SC, Yang L, Delpire E, Ghosh A et al (2011) A critical role for glun2b-containing nmda receptors in cortical development and function. Neuron 72(5):789–805PubMedCrossRefGoogle Scholar
  111. Wang N, Yu HY, Shen XF, Gao ZQ, Yang C, Yang JJ et al (2015) The rapid antidepressant effect of ketamine in rats is associated with down-regulation of pro-inflammatory cytokines in the hippocampus. Ups J Med Sci 120(4):1–8CrossRefGoogle Scholar
  112. Weber MD, Frank MG, Tracey KJ, Watkins LR, Maier SF (2015) Stress induces the danger-associated molecular pattern HMGB-1 in the hippocampus of male Sprague Dawley rats: a priming stimulus of microglia and the NLRP3 inflammasome. J Neurosci 35(1):316–324PubMedPubMedCentralCrossRefGoogle Scholar
  113. Weigelt K, Bergink V, Burgerhout KM, Pescatori M, Wijkhuijs A, Drexhage HA (2013) Down-regulation of inflammation-protective micrornas 146a and 212 in monocytes of patients with postpartum psychosis. Brain Behav Immun 29(2013):147–155PubMedCrossRefGoogle Scholar
  114. Wichers MC, Koek GH, Robaeys G, Verkerk R, Scharpé S, Maes M (2005) Ido and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry 10(6):538–544PubMedCrossRefGoogle Scholar
  115. Wichers MC, Maes M (2004) The role of indoleamine 2,3-dioxygenase (ido) in the pathophysiology of interferon-alpha-induced depression. J Psychiatry Neurosci 29(1):11–17PubMedPubMedCentralGoogle Scholar
  116. Wisner KL, Perel JM, Findling RL (1996) Antidepressant treatment during breast-feeding. Am J Psychiatr 153(9):1132–1137PubMedCrossRefGoogle Scholar
  117. Xie W, Cai L, Yu Y, Gao L, Xiao L, He Q et al (2014) Activation of brain indoleamine 2,3-dioxygenase contributes to epilepsy-associated depressive-like behavior in rats with chronic temporal lobe epilepsy. J Neuroinflammation 11(1):1–10CrossRefGoogle Scholar
  118. Yi SQ, Yang M, Duan KM (2015) Immune-mediated metabolic kynurenine pathways are involved in the postoperative cognitive dysfunction after cardiopulmonary bypass. Thorac Cardiovasc Surg 63(7):618–623PubMedCrossRefGoogle Scholar
  119. Young LT, Warsh JJ, Kish SJ, Shannak K, Hornykeiwicz O (1994) Reduced brain 5-ht and elevated ne turnover and metabolites in bipolar affective disorder ☆. Biol Psychiatry 35(2):121–127PubMedCrossRefGoogle Scholar
  120. Zhang Z, Han Y, Song J, Luo R, Jin X, Mu D et al (2015) Interferon-γ regulates the function of mesenchymal stem cells from oral lichen planus via indoleamine 2,3-dioxygenase activity. J Oral Pathol Med 44(1):15–27PubMedCrossRefGoogle Scholar
  121. Zhang S, Hong J, Zhang T, Wu J, Chen L (2017) Activation of sigma-1 receptor alleviates postpartum estrogen withdrawal-induced “depression” through restoring hippocampal nnos-no-creb activities in mice. Mol Neurobiol 54(4):3017Google Scholar
  122. Zhao Q, Cheng P, Wu X, Chen Y, Wang C, You Z (2014) Maternal sleep deprivation inhibits hippocampal neurogenesis associated with inflammatory response in young offspring rats. Neurobiol Dis 68:57–65PubMedCrossRefGoogle Scholar
  123. Zunszain PA, Anacker C, Cattaneo A, Choudhury S, Musaelyan K, Myint AM, Thuret S, Price J, Pariante CM (2012) Interleukin-1β: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology 37(37):939–949PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kai-Ming Duan
    • 1
  • Jia-Hui Ma
    • 1
  • Sai-Ying Wang
    • 1
    • 2
    • 3
    • 4
  • ZhengDong Huang
    • 1
  • YingYong Zhou
    • 1
  • HeYa Yu
    • 1
  1. 1.Department of AnesthesiologyThird Xiangya Hospital of Central South UniversityChangshaPeople’s Republic of China
  2. 2.Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  3. 3.Institute of Clinical PharmacologyCentral South University, Hunan Key Laboratory of PharmacogeneticsChangshaPeople’s Republic of China
  4. 4.Hunan Province Cooperation Innovation Center for Molecular Target New Drug StudyHengyangPeople’s Republic of China

Personalised recommendations