Metabolic Brain Disease

, Volume 33, Issue 3, pp 675–680 | Cite as

Serum ischemia modified albumin is a possible new marker of oxidative stress in phenylketonuria

  • Fatemeh Keshavarzi
  • Mohsen Rastegar
  • Mahmood Vessal
  • Gholamreza Rafiei Dehbidi
  • Marjan Khorsand
  • Amir Hossein Ganjkarimi
  • Mohammad Ali Takhshid
Original Article
  • 65 Downloads

Abstract

The role of oxidative stress in the pathogenesis of phenylketonuria (PKU)-associated disorders has been implicated. Ischemia modified albumin (IMA) is a modified form of serum albumin, which is produced under the conditions of oxidative stress. The aim of this study was to measure the serum level of IMA in the PKU patients and to investigate its ability in predicting the status of oxidative stress in these patients. Fifty treated-PKU patients and fifty age- and sex-matched healthy subjects were included in the study. The blood samples were obtained and the serum level of phenylalanine (Phe) was measured using reverse phase HPLC method. The levels of IMA, malondialdehyde (MDA), gamma-glutamyl transferase (GGT) activity, and uric acid (UA) were determined using colorimetric methods. The levels of serum Phe, IMA, and MDA were significantly higher (p < 0.001) and the level of UA (p < 0.05) was lower in the PKU patients compared to control group. Serum IMA level was positively correlated with MDA (r = 0.585, p < 0.001) and UA (r = 0.6, p < 0.001). An inverse relationship was observed between the serum level of IMA and Phe (r = − 0.410, p < 0. 01). Results of the present study suggest that serum IMA level could be used as a novel marker for the evaluation of oxidative stress in the PKU patients.

Keywords

Phenylketonuria Oxidative stress Ischemia modified albumin Hyperphenylalaninemia 

Notes

Acknowledgements

This manuscript was extracted from the M.Sc. thesis of Fatemeh Keshavarzi and was supported by Grant from Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran. We are also grateful to all staff of Diagnostic Laboratory Sciences and Technology Research Center of Shiraz University of Medical Sciences for technical assistance in this work.

Compliance with ethical standards

Conflicts of interest

None declare.

References

  1. Bourdon E, Loreau N, Lagrost L, Blache D (2005) Differential effects of cysteine and methionine residues in the antioxidant activity of human serum albumin. Free Radic Res 39(1):15–20.  https://doi.org/10.1080/10715760400024935 CrossRefPubMedGoogle Scholar
  2. Deon M, Landgraf SS, Lamberty JF, Moura DJ, Saffi J, Wajner M, Vargas CR (2015a) Protective effect of L-carnitine on phenylalanine-induced DNA damage. Metab Brain Dis 30(4):925–933.  https://doi.org/10.1007/s11011-015-9649-1 CrossRefPubMedGoogle Scholar
  3. Deon M, Sitta A, Faverzani JL, Guerreiro GB, Donida B, Marchetti DP, Mescka CP, Ribas GS, Coitinho AS, Wajner M, Vargas CR (2015b) Urinary biomarkers of oxidative stress and plasmatic inflammatory profile in phenylketonuric treated patients. Int J Dev Neurosci 47 (Pt B):259–265.  https://doi.org/10.1016/j.ijdevneu.2015.10.001
  4. Erem C, Suleyman AK, Civan N, Mentese A, Nuhoglu I, Uzun A, Ersoz HO, Deger O (2015) Ischemia-modified albumin and malondialdehyde levels in patients with overt and subclinical hyperthyroidism: effects of treatment on oxidative stress. Endocr J 62(6):493–501.  https://doi.org/10.1507/endocrj.EJ14-0542 CrossRefPubMedGoogle Scholar
  5. Guven S, Alver A, Mentese A, Ilhan FC, Calapoglu M, Unsal MA (2009) The novel ischemia marker 'ischemia-modified albumin' is increased in normal pregnancies. Acta Obstet Gynecol Scand 88(4):479–482.  https://doi.org/10.1080/00016340902777517 CrossRefPubMedGoogle Scholar
  6. Heshmati N, Shahgheibi S, Nikkhoo B, Amini S, Abdi M (2017) Association of prooxidant-antioxidant balance with cClinical and laboratory parameters and its relation to different drug regimens in polycystic ovary syndrome women with normal BMI. Indian J Clin Biochem 32(3):315–322.  https://doi.org/10.1007/s12291-016-0613-6 
  7. Jentzsch AM, Bachmann H, Furst P, Biesalski HK (1996) Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 20(2):251–256.  https://doi.org/10.1016/0891-5849(95)02043-8 CrossRefPubMedGoogle Scholar
  8. Karamifar H, Ordoei M, Karamizadeh Z, Amirhakimi GH (2010) Incidence of neonatal hyperphenylalaninemia in fars province, South iran. Iran J Pediatr 20(2):216–220PubMedPubMedCentralGoogle Scholar
  9. Kotani K, Kimura S, Gugliucci A (2011) Paraoxonase-1 and ischemia-modified albumin in patients with end-stage renal disease. J Physiol Biochem 67(3):437–441.  https://doi.org/10.1007/s13105-011-0092-4 CrossRefPubMedGoogle Scholar
  10. Lee DH, Blomhoff R, Jacobs DR Jr (2004) Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res 38(6):535–539.  https://doi.org/10.1080/10715760410001694026 CrossRefPubMedGoogle Scholar
  11. Martinez-Cruz F, Pozo D, Osuna C, Espinar A, Marchante C, Guerrero JM (2002) Oxidative stress induced by phenylketonuria in the rat: Prevention by melatonin, vitamin E, and vitamin C. J Neurosci Res 69(4):550–558Google Scholar
  12. Moraes TB, Dalazen GR, Jacques CE, de Freitas RS, Rosa AP, Dutra-Filho CS (2014) Glutathione metabolism enzymes in brain and liver of hyperphenylalaninemic rats and the effect of lipoic acid treatment. Metab Brain Dis 29(3):609–615.  https://doi.org/10.1007/s11011-014-9491-x PubMedGoogle Scholar
  13. Okano Y, Nagasaka H (2013) Optimal serum phenylalanine for adult patients with phenylketonuria. Mol Genet Metab 110(4):424–430.  https://doi.org/10.1016/j.ymgme.2013.09.007 CrossRefPubMedGoogle Scholar
  14. Oncel M, Kiyici A, Oncel M, Sunam GS, Sahin E, Adam B (2016) Increased ischemia-modified albumin and malondialdehyde levels in videothoracoscopic surgery. Ann Thorac Med 11(1):66–70.  https://doi.org/10.4103/1817-1737.172298 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ribas GS, Sitta A, Wajner M, Vargas CR (2011) Oxidative stress in phenylketonuria: what is the evidence? Cell Mol Neurobiol 31(5):653–662.  https://doi.org/10.1007/s10571-011-9693-2 CrossRefPubMedGoogle Scholar
  16. Robert M, Rocha JC, van Rijn M, Ahring K, Belanger-Quintana A, MacDonald A, Dokoupil K, Gokmen Ozel H, Lammardo AM, Goyens P, Feillet F (2013) Micronutrient status in phenylketonuria. Mol Genet Metab 110(Suppl):S6–17.  https://doi.org/10.1016/j.ymgme.2013.09.009 CrossRefPubMedGoogle Scholar
  17. Rocha JC, Martins MJ (2012) Oxidative stress in phenylketonuria: future directions. J Inherit Metab Dis 35(3):381–398.  https://doi.org/10.1007/s10545-011-9417-2 CrossRefPubMedGoogle Scholar
  18. Sanayama Y, Nagasaka H, Takayanagi M, Ohura T, Sakamoto O, Ito T, Ishige-Wada M, Usui H, Yoshino M, Ohtake A, Yorifuji T, Tsukahara H, Hirayama S, Miida T, Fukui M, Okano Y (2011) Experimental evidence that phenylalanine is strongly associated to oxidative stress in adolescents and adults with phenylketonuria. Mol Genet Metab 103(3):220–225.  https://doi.org/10.1016/j.ymgme.2011.03.019 CrossRefPubMedGoogle Scholar
  19. Schuck PF, Malgarin F, Cararo JH, Cardoso F, Streck EL, Ferreira GC (2015) Phenylketonuria Pathophysiology: on the role of metabolic alterations. Aging Dis 6(5):390–399.  https://doi.org/10.14336/AD.2015.0827
  20. Scriver CR (2007) The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat 28(9):831–845.  https://doi.org/10.1002/humu.20526 CrossRefPubMedGoogle Scholar
  21. Seshadri Reddy V, Sethi S, Gupta N, Agrawal P, Chander Siwach R (2016) Significance of ischemia-modified albumin as simple measure of oxidative stress and discriminatory ability in diabetic rethinopathy. Literature review and meta-analysis. Retina 36(6):1049–1057.  https://doi.org/10.1097/IAE.0000000000001042 CrossRefPubMedGoogle Scholar
  22. Singh RH, Rohr F, Frazier D, Cunningham A, Mofidi S, Ogata B, Splett PL, Moseley K, Huntington K, Acosta PB, Vockley J, Van Calcar SC (2014) Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet Med 16(2):121–131.  https://doi.org/10.1038/gim.2013.179 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sitta A, Barschak AG, Deon M, Terroso T, Pires R, Giugliani R, Dutra-Filho CS, Wajner M, Vargas CR (2006) Investigation of oxidative stress parameters in treated phenylketonuric patients. Metab Brain Dis 21(4):287–296.  https://doi.org/10.1007/s11011-006-9035-0 CrossRefPubMedGoogle Scholar
  24. Sitta A, Vanzin CS, Biancini GB, Manfredini V, de Oliveira AB, Wayhs CA, Ribas GO, Giugliani L, Schwartz IV, Bohrer D, Garcia SC, Wajner M, Vargas CR (2011) Evidence that L-carnitine and selenium supplementation reduces oxidative stress in phenylketonuric patients. Cell Mol Neurobiol 31(3):429–436.  https://doi.org/10.1007/s10571-010-9636-3 CrossRefPubMedGoogle Scholar
  25. Takhshid M, Kojuri J, Tabei S, Tavasouli A, Heidary S, Tabandeh M (2010) Early diagnosis of acute coronary syndrome with sensitive troponin I and ischemia modified albumin. Int Cardivasc Res J 4(4):144–151Google Scholar
  26. Tavana S, Amini S, Hakhamaneshi MS, Andalibi P, Hajir MS, Ardalan A, Abdi M, Fathollahpour A (2016) Prooxidant-antioxidant balance in patients with phenylketonuria and its correlation to biochemical and hematological parameters. J Pediatr Endocrinol Metab 29(6):675–680.  https://doi.org/10.1515/jpem-2015-0398
  27. Voudris KV, Chanin J, Feldman DN, Charitakis K (2015) Novel inflammatory biomarkers in coronary artery disease: potential therapeutic approaches. Curr Med Chem 22(22):2680–2689.  https://doi.org/10.2174/0929867322666150420124427 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Fatemeh Keshavarzi
    • 1
    • 2
  • Mohsen Rastegar
    • 1
  • Mahmood Vessal
    • 2
  • Gholamreza Rafiei Dehbidi
    • 1
  • Marjan Khorsand
    • 1
  • Amir Hossein Ganjkarimi
    • 1
  • Mohammad Ali Takhshid
    • 1
  1. 1.Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran
  2. 2.Fars Science and Research BranchIslamic Azad UniversityShirazIran

Personalised recommendations