Metabolic Brain Disease

, Volume 33, Issue 2, pp 443–455 | Cite as

Peromyscus maniculatus bairdii as a naturalistic mammalian model of obsessive-compulsive disorder: current status and future challenges

  • De Wet Wolmarans
  • Isabella M. Scheepers
  • Dan J. Stein
  • Brian H. Harvey
Original Article

Abstract

Obsessive-compulsive disorder (OCD) is a prevalent and debilitating condition, characterized by intrusive thoughts and repetitive behavior. Animal models of OCD arguably have the potential to contribute to our understanding of the condition. Deer mice (Permomyscus maniculatus bairdii) are characterized by stereotypic behavior which is reminiscent of OCD symptomology, and which may serve as a naturalistic animal model of this disorder. Moreover, a range of deer mouse repetitive behaviors may be representative of different compulsive-like phenotypes. This paper will review work on deer mouse behavior, and evaluate the extent to which this serves as a valid and useful model of OCD. We argue that findings over the past decade indicate that the deer mouse model has face, construct and predictive validity.

Keywords

Deer mouse Obsessive-compulsive Stereotypy Nest building Marble burying Social Animal model 

References

  1. Abramowitz JS et al (2010) Assessment of Obsessive-Compulsive Symptom Dimensions: Development and Evaluation of the Dimensional Obsessive-Compulsive Scale. Psychol Assess 22:180–198PubMedCrossRefGoogle Scholar
  2. Abramovitch A, Cooperman A (2015) The cognitive neuropsychology of obsessive-compulsivedisorder: A critical review Journal of Obsessive-Compulsive and Related Disorders 5:24-36 http://dx.doi.org.nwulib.nwu.ac.za/10.1016/j.jocrd.2015.01.002
  3. Ahmari SE (2016) Using mice to model Obsessive Compulsive Disorder: From genes to circuits. Neuroscience 321:121–137.  https://doi.org/10.1016/j.neuroscience.2015.11.009 PubMedCrossRefGoogle Scholar
  4. Albelda N, Joel D (2012) Animal models of obsessive-compulsive disorder: Exploring pharmacology and neural substrates. Neurosci Biobehav Rev 36:47–63.  https://doi.org/10.1016/j.neubiorev.2011.04.006 PubMedCrossRefGoogle Scholar
  5. Alonso P, López-Solà C, Real E, Segalàs C, Menchón JM (2015) Animal models of obsessive–compulsive disorder: Utility and limitations. Neuropsychiatr Dis Treat 11:1939–1955.  https://doi.org/10.2147/NDT.S62785 PubMedPubMedCentralCrossRefGoogle Scholar
  6. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders vol 5. vol Book, Whole. American Psychiatric Association, WashingtonCrossRefGoogle Scholar
  7. Andersen SL, Greene-Colozzi EA, Sonntag KC (2010) A novel, multiple symptom model of obsessive-compulsive-like behaviors in animals. Biol Psychiatry 68:741–747PubMedCrossRefGoogle Scholar
  8. Aouizerate B, Guehl D, Cuny E, Rougier A, Burbaud P, Tignol J, Bioulac B (2005) Updated overview of the putative role of the serotoninergic system in obsessive-compulsive disorder. Neuropsychiatr Dis Treat 1:231PubMedPubMedCentralGoogle Scholar
  9. Bartz JA, Hollander E (2006) Is obsessive–compulsive disorder an anxiety disorder? Prog Neuro-Psychopharmacol Biol Psychiatry 30:338–352.  https://doi.org/10.1016/j.pnpbp.2005.11.003 CrossRefGoogle Scholar
  10. Bechard AR, Cacodcar N, King MA, Lewis MH (2016) How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology in the indirect basal ganglia pathway of a mouse model. Behav Brain Res 299:122–131PubMedCrossRefGoogle Scholar
  11. Behl A, Swami G, Sircar SS, Bhatia MS, Banerjee BD (2010) Relationship of possible stress-related biochemical markers to oxidative/antioxidative status in obsessive-compulsive disorder. Neuropsychobiology 61:210–214PubMedCrossRefGoogle Scholar
  12. Beiser DG, Hua SE, Houk JC (1997) Network models of the basal ganglia. Curr Opin Neurobiol 7:185–190PubMedCrossRefGoogle Scholar
  13. Bejerot S, Bodlund O (1998) Response to high doses of citalopram in treatment-resistant obsessive- compulsive disorder. Acta Psychiatr Scand 98:423–424PubMedCrossRefGoogle Scholar
  14. Berk M et al (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35:804–817PubMedCrossRefGoogle Scholar
  15. Berrocal C, Ruiz Moreno MA, Montero M, Rando MA, Rucci P, Cassano GB (2006) Social anxiety and obsessive-compulsive spectra: Validation of the SHY-SR and the OBS-SR among the Spanish population. Psychiatry Res 142:241–251.  https://doi.org/10.1016/j.psychres. 2005.07.025 PubMedCrossRefGoogle Scholar
  16. Blier P, Ei Mansari M, Ducharme V, Bouchard C (1996) Role of the terminal 5-HT autoreceptor in the orbitofrontal cortex in the mechanism of action of 5-HT reuptake inhibitors in obsessive compulsive disorder. Eur Neuropsychopharmacol 6:91–91.  https://doi.org/10.1016/0924-977X(96)87719-4 CrossRefGoogle Scholar
  17. Burguière E, Monteiro P, Mallet L, Feng G, Graybiel AM (2015) Striatal circuits, habits, and implications for obsessive-compulsive disorder. Curr Opin Neurobiol 30:59–65.  https://doi.org/10.1016/j.conb.2014.08.008 PubMedCrossRefGoogle Scholar
  18. Camfield DA, Sarris J, Berk M (2011) Nutraceuticals in the treatment of Obsessive Compulsive Disorder (OCD): A review of mechanistic and clinical evidence. Prog Neuro-Psychopharmacol Biol Psychiatry 35:887–895CrossRefGoogle Scholar
  19. Chakraborty S, Dasgupta A, Das HN, Singh OP, Mandal AK, Mandal N (2009a) Study of oxidative stress in obsessive compulsive disorder in response to treatment with Fluoxetine. Indian J Clin Biochem 24:194–197PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chakraborty S, Singh OP, Dasgupta A, Mandal N, Das HN (2009b) Correlation between lipid peroxidation-induced TBARS level and disease severity in obsessive-compulsive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 33:363–366CrossRefGoogle Scholar
  21. Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181PubMedCrossRefGoogle Scholar
  22. Chesselet MF, Delfs JM (1996) Basal ganglia and movement disorders: An update. Trends Neurosci 19:417–422PubMedCrossRefGoogle Scholar
  23. Chou-Green JM, Holscher TD, Dallman MF, Akana SF (2003a) Compulsive behavior in the 5-HT2C receptor knockout mouse. Physiol Behav 78:641–649PubMedCrossRefGoogle Scholar
  24. Chou-Green JM, Holscher TD, Dallman MF, Akana SF (2003b) Repeated stress in young and old 5-HT2C receptor knockout mice. Physiol Behav 79:217–226.  https://doi.org/10.1016/S0031-9384(03)00096-9 PubMedCrossRefGoogle Scholar
  25. Colomer C, Berenguer C, Roselló B, Baixauli I, Miranda A (2017) The impact of inattention, hyperactivity/impulsivity symptoms, and executive functions on learning behaviors of children with ADHD. Front Psychol 8:540.  https://doi.org/10.3389/fpsyg.2017.00540 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cools R, Roberts AC, Robbins TW (2008) Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn Sci 12:31–40PubMedCrossRefGoogle Scholar
  27. Daw ND, Kakade S, Dayan P (2002) Opponent interactions between serotonin and dopamine. Neural Netw 15:603–616.  https://doi.org/10.1016/S0893-6080(02)00052-7 PubMedCrossRefGoogle Scholar
  28. Denys D, Zohar J, Westenberg HGM (2004) The role of dopamine in obsessive-compulsive disorder: Preclinical and clinical evidence. J Clin Psychiatry 65:11–17PubMedGoogle Scholar
  29. Dixit MP, Thakre PP, Pannase AS, Aglawe MM, Taksande BG, Kotagale NR (2014) Imidazoline binding sites mediates anticompulsive-like effect of agmatine in marble-burying behavior in mice. Eur J Pharmacol 732:26–31.  https://doi.org/10.1016/j.ejphar.2014.02.045 PubMedCrossRefGoogle Scholar
  30. Eilam D, Zor R, Szechtman H, Hermesh H (2006) Rituals, stereotypy and compulsive behavior in animals and humans. Neurosci Biobehav Rev 30:456–471.  https://doi.org/10.1016/j.neubiorev.2005.08.003 PubMedCrossRefGoogle Scholar
  31. El Mansari M, Blier P (2006) Mechanisms of action of current and potential pharmacotherapies of obsessive-compulsive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 30:362–373.  https://doi.org/10.1016/j.pnpbp.2005.11.005 CrossRefGoogle Scholar
  32. Eng GK, Sim K, Chen SHA (2015) Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: An integrative review. Neurosci Biobehav Rev 52:233–257.  https://doi.org/10.1016/j.neubiorev.2015.03.002 PubMedCrossRefGoogle Scholar
  33. Erzegovesi S, Guglielmo E, Siliprandi F, Bellodi L (2005) Low-dose risperidone augmentation of fluvoxamine treatment in obsessive-compulsive disorder: A double-blind, placebo-controlled study. Eur Neuropsychopharmacol 15:69–74PubMedCrossRefGoogle Scholar
  34. Evans DW, Lewis MD, Iobst E (2004) The role of the orbitofrontal cortex in normally developing compulsive-like behaviors and obsessive–compulsive disorder. Brain Cogn 55:220–234.  https://doi.org/10.1016/S0278-2626(03)00274-4
  35. Ferreira GM, Yücel M, Dawson A, Lorenzetti V, Fontenelle LF (2017) Investigating the role of anticipatory reward and habit strength in obsessive-compulsive disorder. CNS Spectr 22:295–304.  https://doi.org/10.1017/S1092852916000535
  36. Figee M, Vink M, De Geus F, Vulink N, Veltman DJ, Westenberg H, Denys D (2011) Dysfunctional reward circuitry in obsessive-compulsive disorder. Biol Psychiatry 69:867–874.  https://doi.org/10.1016/j.biopsych.2010.12.003 PubMedCrossRefGoogle Scholar
  37. Fineberg N, Chamberlain S, Hollander E, Boulougouris V, Robbins T (2011) Translational approaches to obsessive-compulsive disorder: from animal models to clinical treatment. Br J Pharmacol 164:1044–1061PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fineberg NA, Craig KJ (2007) Pharmacological treatment for obsessive–compulsive disorder. Anxiety Disord Part 3 of 3 6:234–239.  https://doi.org/10.1016/j.mppsy.2007.04.001 Google Scholar
  39. Fineberg NA, Nigam A, Sivakumaran T (2006) Pharmacologic strategies for treatment-resistant OCD: A review of the evidence. Psychiatr Ann 36:464–473Google Scholar
  40. Fletcher PJ (1995) Effects of combined or separate 5,7-dihydroxytryptamine lesions of the dorsal and median raphe nuclei on responding maintained by a DRL 20s schedule of food reinforcement. Brain Res 675:45–54PubMedCrossRefGoogle Scholar
  41. Fletcher PJ, Korth KM (1999) Activation of 5-HT1B receptors in the nucleus accumbens reduces amphetamine-induced enhancement of responding for conditioned reward. Psychopharmacology 142:165–174PubMedCrossRefGoogle Scholar
  42. Fletcher PJ, Korth KM, Chambers JW (1999) Selective destruction of brain serotonin neurons by 5,7- dihydroxytryptamine increases responding for a conditioned reward. Psychopharmacology 147:291–299PubMedCrossRefGoogle Scholar
  43. Frick KM, Fernandez SM (2003) Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice. Neurobiol Aging 24:615–626PubMedCrossRefGoogle Scholar
  44. Frick KM, Stearns NA, Pan J-Y, Berger-Sweeney J (2003) Effects of environmental enrichment on spatial memory and neurochemistry in middle-aged mice. Learn Mem 10:187–198PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432PubMedCrossRefGoogle Scholar
  46. Gillan CM, Papmeyer M, Morein-Zamir S, Sahakian BJ, Fineberg NA, Robbins TW, De Wit S (2011) Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. Am J Psychiatr 168:718–726.  https://doi.org/10.1176/appi.ajp.2011.10071062 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Goddard AW, Shekhar A, Whiteman AF, McDougle CJ (2008) Serotoninergic mechanisms in the treatment of obsessive–compulsive disorder. Drug Discov Today 13:325–332.  https://doi.org/10.1016/j.drudis.2007.12.009 PubMedCrossRefGoogle Scholar
  48. Graybiel AM (2008) Habits, rituals, and the evaluative brain. Annual review of neuroscience 31:359-387.  https://doi.org/10.1146/annurev.neuro.29.051605.112851
  49. Greer JM, Capecchi MR (2002) Hoxb8 Is Required for Normal Grooming Behavior in Mice. Neuron 33:23–34.  https://doi.org/10.1016/S0896-6273(01)00564-5 PubMedCrossRefGoogle Scholar
  50. Greene-Schloesser DM et al (2011) Predictive validity of a non-induced mouse model of compulsive-like behavior. Behav Brain Res 221:55–62PubMedPubMedCentralCrossRefGoogle Scholar
  51. Güldenpfennig M, Wolmarans DW, du Preez JL, Stein DJ, Harvey BH (2011) Cortico-striatal oxidative status, dopamine turnover and relation with stereotypy in the deer mouse. Physiol Behav 103:404–411.  https://doi.org/10.1016/j.physbeh.2011.03.008 PubMedCrossRefGoogle Scholar
  52. Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4PubMedCrossRefGoogle Scholar
  53. Hadley C, Hadley B, Ephraim S, Yang M, Lewis MH (2006) Spontaneous stereotypy and environmental enrichment in deer mice (Peromyscus maniculatus): Reversibility of experience. Appl Anim Behav Sci 97:312–322.  https://doi.org/10.1016/j.applanim.2005.08.006 CrossRefGoogle Scholar
  54. Hesse S et al (2005) Serotonin and dopamine transporter imaging in patients with obsessive-compulsive disorder. Psychiatry Res Neuroimaging 140:63–72PubMedCrossRefGoogle Scholar
  55. Hoffman KL (2011) Animal models of obsessive compulsive disorder: Recent findings and future directions. Expert Opin Drug Discovery 6:725–737.  https://doi.org/10.1517/17460441.2011.577772 CrossRefGoogle Scholar
  56. Hoffman KL, Rueda Morales RI (2009) Toward an understanding of the neurobiology of "just right" perceptions: Nest building in the female rabbit as a possible model for compulsive behavior and the perception of task completion. Behav Brain Res 204:182–191PubMedCrossRefGoogle Scholar
  57. Hollander E, Rossi NB, Sood E, Pallanti S (2003) Risperidone augmentation in treatment-resistant obsessive-compulsive disorder: A double-blind, placebo-controlled study. Int J Neuropsychopharmacol 6:397–401PubMedCrossRefGoogle Scholar
  58. Husted DS, Shapira NA, Goodman WK (2006) The neurocircuitry of obsessive–compulsive disorder and disgust. Prog Neuro-Psychopharmacol Biol Psychiatry 30:389–399.  https://doi.org/10.1016/j.pnpbp.2005.11.024 CrossRefGoogle Scholar
  59. Ichimaru Y, Egawa T, Sawa A (1995) 5-HT(1A)-receptor subtype mediates the effect of fluvoxamine, a selective serotonin reuptake inhibitor, on marble-burying behavior in mice. Jpn J Pharmacol 68:65–70PubMedCrossRefGoogle Scholar
  60. Ipser JC, Carey P, Dhansay Y, Fakier N, Seedat S, Stein DJ (2006) Pharmacotherapy augmentation strategies in treatment-resistant anxiety disorders. The Cochrane database of systematic reviews:Cd005473 https://doi.org/10.1002/14651858.CD005473.pub2
  61. Iyo M, Maeda Y, Inada T, Kitao Y, Sasaki H, Fukui S (1995) The effects of a selective cAMP phosphodiesterase inhibitor, rolipram, on methamphetamine-induced behavior. Neuropsychopharmacology 13:33–39PubMedCrossRefGoogle Scholar
  62. Jirkof P (2014) Burrowing and nest building behavior as indicators of well-being in mice. Measuring Behav 234:139–146.  https://doi.org/10.1016/j.jneumeth.2014.02.001 Google Scholar
  63. Joel D (2006) Current animal models of obsessive compulsive disorder: A critical review. Prog Neuro-Psychopharmacol Biol Psychiatry 30:374–388.  https://doi.org/10.1016/j.pnpbp.2005.11.006 CrossRefGoogle Scholar
  64. Joyner CP, Myrick LC, Crossland JP, Dawson WD (1998) Deer mice as laboratory animals. ILAR J 39:322–330PubMedCrossRefGoogle Scholar
  65. Kapur S, Remington G (1996) Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatr 153:466–476PubMedCrossRefGoogle Scholar
  66. Kedia S, Chattarji S (2014) Marble burying as a test of the delayed anxiogenic effects of acute immobilisation stress in mice. J Neurosci Methods 233:150–154.  https://doi.org/10.1016/j.jneumeth.2014.06.012 PubMedCrossRefGoogle Scholar
  67. Kim KL, Reynolds KC, Alfano CA (2012) Social impairment in children with obsessive compulsive disorder: Do comorbid problems of inattention and hyperactivity matter? J Obsessive Compuls Relat Disord 1:228–233.  https://doi.org/10.1016/j.jocrd.2012.06.005 CrossRefGoogle Scholar
  68. Kinnear CJ et al (2000) Obsessive-compulsive disorder and the promoter region polymorphism (5-HTTLPR) in the serotonin transporter gene (SLC6A4): A negative association study in the Afrikaner population. Int J Neuropsychopharmacol, 331 3:327Google Scholar
  69. Korff S, Stein DJ, Harvey BH (2008) Stereotypic behaviour in the deer mouse: Pharmacological validation and relevance for obsessive compulsive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 32:348–355CrossRefGoogle Scholar
  70. Korff S, Stein DJ, Harvey BH (2009) Cortico-striatal cyclic AMP-phosphodiesterase-4 signalling and stereotypy in the deer mouse: Attenuation after chronic fluoxetine treatment. Pharmacol Biochem Behav 92:514–520.  https://doi.org/10.1016/j.pbb.2009.01.025 PubMedCrossRefGoogle Scholar
  71. Lafleur DL et al (2006) N-acetylcysteine augmentation in serotonin reuptake inhibitor refractory obsessive-compulsive disorder. Psychopharmacology 184:254–256PubMedCrossRefGoogle Scholar
  72. Langen M, Kas MJH, Staal WG, van Engeland H, Durston S (2011) The neurobiology of repetitive behavior: Of mice. Neurosci Biobehav Rev 35:345–355.  https://doi.org/10.1016/j.neubiorev.2010.02.004 PubMedCrossRefGoogle Scholar
  73. Lewis MH, Tanimura Y, Lee LW, Bodfish JW (2007) Animal models of restricted repetitive behavior in autism. Behav Brain Res 176:66–74.  https://doi.org/10.1016/j.bbr.2006.08.023 PubMedCrossRefGoogle Scholar
  74. Li X, Morrow D, Witkin JM (2006) Decreases in nestlet shredding of mice by serotonin uptake inhibitors: Comparison with marble burying. Life Sci 78:1933–1939PubMedCrossRefGoogle Scholar
  75. Ljungberg T, Apicella P, Schultz W (1991) Responses of monkey midbrain dopamine neurons during delayed alternation performance. Brain Res 567:337–341PubMedCrossRefGoogle Scholar
  76. Markarian Y et al (2010) Multiple pathways to functional impairment in obsessive–compulsive disorder. Clin Psychol Rev 30:78–88.  https://doi.org/10.1016/j.cpr.2009.09.005 PubMedCrossRefGoogle Scholar
  77. Mataix-Cols D, Rauch SL, Manzo PA, Jenike MA, Baer L (1999) Use of factor-analyzed symptom dimensions to predict outcome with serotonin reuptake inhibitors and placebo in the treatment of obsessive-compulsive disorder. Am J Psychiatr 156:1409–1416PubMedGoogle Scholar
  78. McDougle CJ, Epperson CN, Pelton GH, Wasylink S, Price LH (2000) A double-blind, placebo-controlled study of risperidone addition in serotonin reuptake inhibitor-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 57:794–801PubMedCrossRefGoogle Scholar
  79. Mirenowicz J, Schultz W (1994) Importance of unpredictability for reward responses in primate dopamine neurons. J Neurophysiol 72:1024–1027PubMedCrossRefGoogle Scholar
  80. Morein-Zamir S et al (2014) The profile of executive function in OCD hoarders and hoarding disorder. Psychiatry Res 215:659–667.  https://doi.org/10.1016/j.psychres.2013.12.026 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nambu A (2008) Seven problems on the basal ganglia. Curr Opin Neurobiol 18:595–604.  https://doi.org/10.1016/j.conb.2008.11.001 PubMedCrossRefGoogle Scholar
  82. Olley A, Malhi G, Sachdev P (2007) Memory and executive functioning in obsessive-compulsive disorder: A selective review. J Affect Disord 104:15–23.  https://doi.org/10.1016/j.jad.2007.02.023 PubMedCrossRefGoogle Scholar
  83. Overduin MK, Furnham A (2012) Assessing obsessive-compulsive disorder (OCD): A review of self-report measures. J Obsessive Compuls Relat Disord 1:312–324CrossRefGoogle Scholar
  84. Owens MJ, Knight DL, Nemeroff CB (2001) Second-generation SSRIs: Human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry 50:345–350PubMedCrossRefGoogle Scholar
  85. Palminteri S, Clair AH, Mallet L, Pessiglione M (2012) Similar improvement of reward and punishment learning by serotonin reuptake inhibitors in obsessive-compulsive disorder. Biol Psychiatry 72:244–250.  https://doi.org/10.1016/j.biopsych.2011.12.028 PubMedCrossRefGoogle Scholar
  86. Palminteri S, Lebreton M, Worbe Y, Grabli D, Hartmann A, Pessiglione M (2009) Pharmacological modulation of subliminal learning in Parkinson's and Tourette's syndromes. Proc Natl Acad Sci U S A 106:19179–19184.  https://doi.org/10.1073/pnas.0904035106 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pinto A, Steinglass JE, Greene AL, Weber EU, Simpson HB (2014) Capacity to delay reward differentiates obsessive-compulsive disorder and obsessive-compulsive personality disorder. Biol Psychiatry 75:653–659.  https://doi.org/10.1016/j.biopsych.2013.09.007 PubMedCrossRefGoogle Scholar
  88. Powell SB, Newman HA, Pendergast JF, Lewis MH (1999) A Rodent Model of Spontaneous Stereotypy: Initial Characterization of Developmental, Environmental, and Neurobiological Factors. Physiol Behav 66:355–363.  https://doi.org/10.1016/S0031-9384(98)00303-5 PubMedCrossRefGoogle Scholar
  89. Presti MF, Gibney BC, Lewis MH (2004) Effects of intrastriatal administration of selective dopaminergic ligands on spontaneous stereotypy in mice. Physiol Behav 80:433–439PubMedCrossRefGoogle Scholar
  90. Presti MF, Lewis MH (2005) Striatal opioid peptide content in an animal model of spontaneous stereotypic behavior. Behav Brain Res 157:363–368PubMedCrossRefGoogle Scholar
  91. Presti MF, Mikes HM, Lewis MH (2003) Selective blockade of spontaneous motor stereotypy via intrastriatal pharmacological manipulation. Pharmacol Biochem Behav 74:833–839PubMedCrossRefGoogle Scholar
  92. Presti MF, Powell SB, Lewis MH (2002) Dissociation between spontaneously emitted and apomorphine-induced stereotypy in Peromyscus maniculatus bairdii. Physiol Behav 75:347–353PubMedCrossRefGoogle Scholar
  93. Presti MF, Watson CJ, Kennedy RT, Yang M, Lewis MH (2004b) Behavior-related alterations of striatal neurochemistry in a mouse model of stereotyped movement disorder. Pharmacol Biochem Behav 77:501–507PubMedCrossRefGoogle Scholar
  94. Reimold M et al (2007) Reduced availability of serotonin transporters in obsessive-compulsive disorder correlates with symptom severity - A [11C]DASB PET study. J Neural Transm 114:1603–1609PubMedCrossRefGoogle Scholar
  95. Romo R, Schultz W (1990) Dopamine neurons of the monkey midbrain: Contingencies of responses to active touch during self-initiated arm movements. J Neurophysiol 63:592–606PubMedCrossRefGoogle Scholar
  96. Rosa AC et al (2012) Clinical correlates of social adjustment in patients with obsessive-compulsive disorder. J Psychiatr Res 46:1286–1292.  https://doi.org/10.1016/ j.jpsychires.2012.05.019 PubMedCrossRefGoogle Scholar
  97. Rufer M, Fricke S, Moritz S, Kloss M, Hand I (2006) Symptom dimensions in obsessive–compulsive disorder: prediction of cognitive-behavior therapy outcome. Acta Psychiatr Scand 113:440–446PubMedCrossRefGoogle Scholar
  98. Ruscio A, Stein D, Chiu W, Kessler R (2010) The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry 15:53–63PubMedCrossRefGoogle Scholar
  99. Rymar VV, Sasseville R, Luk KC, Sadikot AF (2004) Neurogenesis and Stereological Morphometry of Calretinin-Immunoreactive GABAergic Interneurons of the Neostriatum. J Comp Neurol 469:325–339PubMedCrossRefGoogle Scholar
  100. Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S (2007) Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative–antioxidative systems. Hum Psychopharmacol Clin Exp 22:67–73CrossRefGoogle Scholar
  101. Saxena S, Rauch SL (2000) Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin N Am 23:563–586CrossRefGoogle Scholar
  102. Sayyah M, Boostani H, Pakseresht S, Malayeri A (2010) Comparison of Silybum marianum (L.) Gaertn. with fluoxetine in the treatment of Obsessive− Compulsive Disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 34:362–365CrossRefGoogle Scholar
  103. Schultz W (2002) Getting Formal with Dopamine and Reward. Neuron 36:241–263.  https://doi.org/10.1016/S0896-6273(02)00967-4 PubMedCrossRefGoogle Scholar
  104. Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13:900–913PubMedGoogle Scholar
  105. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599PubMedCrossRefGoogle Scholar
  106. Selek S, Herken H, Bulut M, Ceylan MF, Celik H, Savas HA, Erel O (2008) Oxidative imbalance in obsessive compulsive disorder patients: A total evaluation of oxidant-antioxidant status. Prog Neuro-Psychopharmacol Biol Psychiatry 32:487–491CrossRefGoogle Scholar
  107. Shanahan NA, Velez LP, Masten VL, Dulawa SC (2011) Essential Role for Orbitofrontal Serotonin 1B Receptors in Obsessive-Compulsive Disorder-like Behavior and Serotonin Reuptake Inhibitor Response in Mice Biol Psychiatry. 70:1039-1048.  https://doi.org/10.1016/j.biopsych.2011.07.032
  108. Shorter KR, Crossland JP, Webb D, Szalai G, Felder MR, Vrana PB (2012) Peromyscus as a mammalian epigenetic model Genetics research international 2012Google Scholar
  109. Shorter KR et al (2014) Natural genetic variation underlying differences in peromyscus repetitive and social/aggressive behaviors. Behav Genet 44:126–135.  https://doi.org/10.1007/s10519-013-9640-8 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Smithers RHN (1983) XXIII. Families CRICETIDAE and MURIDAE, Rats and mice. In: The Mammals of the Southern-African Subregion, vol 1. University of Pretoria, Pretoria, South Africa, pp 220–220 - 296Google Scholar
  111. Stocco A, Lebiere C, Anderson JR (2010) Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia's Role in Cognitive Coordination. Psychol Rev 117:541–574PubMedPubMedCentralCrossRefGoogle Scholar
  112. Storch EA, Ledley DR, Lewin AB, Murphy TK, Johns NB, Goodman WK, Geffken GR (2006) Peer victimization in children with obsessive-compulsive disorder: Relations with symptoms of psychopathology. J Clin Child Adolesc Psychol 35:446–455PubMedCrossRefGoogle Scholar
  113. Szechtman H et al (2001) Compulsive checking behavior of quinpirole-sensitized rats as an animal model Obsessive-Compulsive Disorder(OCD): Form and control. BMC Neurosci 2:4PubMedPubMedCentralCrossRefGoogle Scholar
  114. Szechtman H, Sulis W, Eilam D (1998) Quinpirole induces compulsive checking behavior in rats: A potential animal model of obsessive-compulsive disorder (OCD). Behav Neurosci 112:1475–1485PubMedCrossRefGoogle Scholar
  115. Szechtman H, Ahmari SE, Beninger RJ, Eilam D, Harvey BH, Edemann-Callesen H, Winter C (2017) Obsessive-compulsive disorder: insights from animal models. Neurosci Biobehav Rev 76:254–279PubMedCrossRefGoogle Scholar
  116. Tanimura Y, Ogoegbunam FC, Lewis MH (2009) Amphetamine-induced sensitization and spontaneous stereotypy in deer mice. Pharmacol Biochem Behav 92:670–675PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tanimura Y, Vaziri S, Lewis MH (2010) Indirect basal ganglia pathway mediation of repetitive behavior: attenuation by adenosine receptor agonists. Behav Brain Res 210:116–122PubMedPubMedCentralCrossRefGoogle Scholar
  118. Tanimura Y, Yang MC, Lewis MH (2008) Procedural learning and cognitive flexibility in a mouse model of restricted, repetitive behaviour. Behav Brain Res 189:250–256PubMedCrossRefGoogle Scholar
  119. Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–692PubMedCrossRefGoogle Scholar
  120. Torres AR, Fontenelle LF, Shavitt RG, Ferrão YA, do Rosário MC, Storch EA, Miguel EC (2016) Comorbidity variation in patients with obsessive–compulsive disorder according to symptom dimensions: Results from a large multicentre clinical sample. J Affect Disord 190:508–516.  https://doi.org/10.1016/j.jad.2015.10.051 PubMedCrossRefGoogle Scholar
  121. Tucci MC et al (2013) Effects of the serotonergic agonist mCPP on male rats in the quinpirole sensitization model of obsessive-compulsive disorder (OCD). Psychopharmacology 227:277–285.  https://doi.org/10.1007/s00213-013-2976-1 PubMedCrossRefGoogle Scholar
  122. Tucci MC, Dvorkin-Gheva A, Johnson E, Wong M, Szechtman H (2015) 5-HT2A/C receptors do not mediate the attenuation of compulsive checking by mCPP in the quinpirole sensitization rat model of obsessive-compulsive disorder (OCD). Behav Brain Res 279:211–217.  https://doi.org/10.1016/j.bbr.2014.11.017 PubMedCrossRefGoogle Scholar
  123. van den Heuvel OA et al (2005) Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Arch Gen Psychiatry 62:301–309PubMedCrossRefGoogle Scholar
  124. Vermeire S et al (2012) Serotonin 2A receptor, serotonin transporter and dopamine transporter alterations in dogs with compulsive behaviour as a promising model for human obsessive-compulsive disorder. Psychiatry Res Neuroimaging 201:78–87.  https://doi.org/10.1016/j.pscychresns.2011.06.006 PubMedCrossRefGoogle Scholar
  125. Vrana PB (2007) Genomic imprinting as a mechanism of reproductive isolation in mammals. J Mammal 88:5–23.  https://doi.org/10.1644/06-MAMM-S-013R1.1 CrossRefGoogle Scholar
  126. Wang JF, Shao L, Sun X, Young LT (2009) Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 11:523–529PubMedCrossRefGoogle Scholar
  127. Welch JM et al (2007) Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448:894–900.  https://doi.org/10.1038/nature06104 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wilson CJ, Groves PM (1981) Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Res 220:67–80PubMedCrossRefGoogle Scholar
  129. Wolmarans DW, Brand L, Stein DJ, Harvey BH (2013) Reappraisal of spontaneous stereotypy in the deer mouse as an animal model of obsessive-compulsive disorder (OCD): Response to escitalopram treatment and basal serotonin transporter (SERT) density. Behav Brain Res 256:545–553.  https://doi.org/10.1016/j.bbr.2013.08.049 CrossRefGoogle Scholar
  130. Wolmarans DW, Stein DJ, Harvey BH (2016a) Excessive nest building is a unique behavioural phenotype in the deer mouse model of obsessive-compulsive disorder. J Psychopharmacol 30:867–874.  https://doi.org/10.1177/0269881116645554 CrossRefGoogle Scholar
  131. Wolmarans DW, Stein DJ, Harvey BH (2016b) Of mice and marbles: Novel perspectives on burying behavior as a screening test for psychiatric illness. Cogn Affect Behav Neurosci 16:551–560 https://doi.org/10.3758/s13415-016-0413-8
  132. Wolmarans DW, Stein DJ, Harvey BH (2017a) Social behavior in deer mice as a novel interactive paradigm of relevance for obsessive-compulsive disorder (OCD). Soc Neurosci 12:135–149.  https://doi.org/10.1080/17470919.2016.1145594 PubMedCrossRefGoogle Scholar
  133. Wolmarans W, Stein DJ, Harvey BH (2017b) If Rodents Could Speak: A Psycho-Behavioral Perspective on modelling Obsessive-Compulsive Disorder (OCD) in Animals: The role of Context. Curr Med Chem.  https://doi.org/10.2174/0929867324666170523125256
  134. Wu H, McBride TJ, Isanhart JP, Cox SB, Hooper MJ (2009) Responses of glutamate cysteine ligase and glutathione to oxidants in deer mice (Peromyscus maniculatus). Ecotoxicol Environ Saf 72:1572–1578.  https://doi.org/10.1016/j.ecoenv.2009.02.008 PubMedCrossRefGoogle Scholar
  135. Yadin E, Friedman E, Bridger WH (1991) Spontaneous alternation behavior: An animal model for obsessive-compulsive disorder? Pharmacol Biochem Behav 40:311–315PubMedCrossRefGoogle Scholar
  136. Yang H et al (2011) Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43:648–655.  https://doi.org/10.1038/ng.847 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Yelnik J, Francois C, Percheron G, Tande D (1991) Morphological taxonomy of the neurons of the primate striatum. J Comp Neurol 313:273–294PubMedCrossRefGoogle Scholar
  138. Zitterl W et al (2008) Changes in thalamus-hypothalamus serotonin transporter availability during clomipramine administration in patients with obsessive-compulsive disorder. Neuropsychopharmacology 33:3126–3134PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth-West UniversityPotchefstroomSouth Africa
  2. 2.MRC Unit on Risk and Resilience in Mental DisordersCape TownSouth Africa
  3. 3.Department of Psychiatry and Mental Health, MRC Unit on Risk and Resilience in Mental DisordersUniversity of Cape TownCape TownSouth Africa

Personalised recommendations