Metabolic Brain Disease

, Volume 33, Issue 2, pp 397–410 | Cite as

Hippocampal neurogenesis in the C57BL/6J mice at early adulthood following prenatal alcohol exposure

  • Oladiran I. Olateju
  • Muhammad A. Spocter
  • Nina Patzke
  • Amadi O. Ihunwo
  • Paul R. Manger
Original Article
  • 178 Downloads

Abstract

We examined the effect of chronic prenatal alcohol exposure (PAE) on the process of adult neurogenesis in C57BL/6J mice at early adulthood (PND 56). Pregnant mice, and their in utero litters, were exposed to alcohol, through oral gavage, on gestational days 7–16, with recorded blood alcohol concentrations averaging 184 mg/dL (CA group). Two control groups, sucrose (CAc) and non-treated (NTc) control groups were also examined. The brains of pups at PND 56 from each experimental group were sectioned in a sagittal plane, and stained for Nissl substance with cresyl violet, and immunostained for Ki-67 which labels proliferative cells and doublecortin (DCX) for immature neurons. Morphologically, the neurogenic pattern was identical in all three groups studied. Populations of Ki-67 immunopositive cells in the dentate gyrus were not statistically significantly different between the experimental groups and there were no differences between the sexes. Thus, the PAE in this study does not appear to have a strong effect on the proliferative process in the adult hippocampus. In contrast, the numbers of immature neurons, labeled with DCX, was statistically significantly lower in the prenatal alcohol exposed mice compared with the two control groups. Alcohol significantly lowered the number of DCX hippocampal cells in the male mice, but not in the female mice. This indicates that the PAE appears to lower the rate of conversion of proliferative cells to immature neurons and this effect of alcohol is sexually dimorphic. This lowered number of immature neurons in the hippocampus appears to mirror hippocampal dysfunctions observed in FASD children.

Keywords

Adult neurogenesis Adult hippocampal neurogenesis Fetal alcohol spectrum disorder Memory dysfunction Proliferation Immature neurons 

References

  1. Åberg E, Hofstetter CP, Olson L, Brené S (2005) Moderate ethanol consumption increases hippocampal cell proliferation and neurogenesis in the adult mouse. Int J Neuropsychopharmacol 8(04):557–567.  https://doi.org/10.1017/S1461145705005286 CrossRefPubMedGoogle Scholar
  2. Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70(4):589–596.  https://doi.org/10.1016/j.neuron.2011.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balthazart J, Ball GF (2014) Endogenous versus exogenous markers of adult neurogenesis in canaries and other birds: advantages and disadvantages. J Comp Neurol 522(18):4100–4120.  https://doi.org/10.1002/cne.23661 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bannerman DM, Rawlinsa JNP, McHugha SB, Deacona RMJ, Yeeb BK, Bast T, Zhang WN, Pothuizen HHJ, Feldon J (2004) Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28(3):273–283.  https://doi.org/10.1016/j.neubiorev.2004.03.004 CrossRefPubMedGoogle Scholar
  5. Bettio LEB, Patten AR, Gil-Mohapel J, O’Rourke NF, Hanley RP, Kennedy S, Gopalakrishnan K, Rodrigues ALS, Wulff J, Christie BR (2016) ISX-9 can potentiate cell proliferation and neuronal commitment in the rat dentate gyrus. Neuroscience 332:212–222.  https://doi.org/10.1016/j.neuroscience.2016.06.042 CrossRefPubMedGoogle Scholar
  6. Bielawski DM, Abel EL (1997) Acute treatment of paternal alcohol exposure produces malformations in offspring. Alcohol 14(4):397–401.  https://doi.org/10.1016/S0741-8329(97)87951-7 CrossRefPubMedGoogle Scholar
  7. Boehme F, Gil-Mohapel J, Cox A, Patten A, Giles E, Brocardo PS, Christie BR (2011) Voluntary exercise induces adult hippocampal neurogenesis and BDNF expression in a rodent model of fetal alcohol Spectrum disorders. Eur J Neurosci 33(10):1799–1811.  https://doi.org/10.1111/j.1460-9568.2011.07676.x CrossRefPubMedGoogle Scholar
  8. Burden MJ, Jacobson SW, Sokol RJ, Jacobson JL (2005) Effects of prenatal alcohol exposure on attention and working memory at 7.5 year of age. Alcohol Clin Exp Res 29(3):443–452.  https://doi.org/10.1097/01.ALC.0000156125.50577.EC CrossRefPubMedGoogle Scholar
  9. Cameron HA, Glover LR (2015) Adult neurogenesis: beyond learning and memory. Annu Rev Psychol 66(1):53–81.  https://doi.org/10.1146/annurev-psych-010814-015006 CrossRefPubMedGoogle Scholar
  10. Chan RW, Leong ATL, Ho HC, Gao PP, Wong EC, Dong CM, Wang X, He J, Chan Y-S, Lim LW, Wu EX (2017) Low-frequency hippocampal–cortical activity drives brain-wide resting-state functional MRI connectivity. PNAS 114(33):E6972–E6981.  https://doi.org/10.1073/pnas.1703309114 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen ML, Olson HC, Picciano JF, Starr JR, Owens J (2012) Sleep problems in children with fetal alcohol spectrum disorders. J Clin Sleep Med 8(4):421–429.  https://doi.org/10.5664/jcsm.2038 PubMedPubMedCentralGoogle Scholar
  12. Choi IY, Allan AM, Cunningham LA (2005) Moderate fetal alcohol exposure impairs the neurogenic response to an enriched environment in adult mice. Alcohol Clin Exp Res 29(11):2053–2062.  https://doi.org/10.1097/01.alc.0000187037.02670.59 CrossRefPubMedGoogle Scholar
  13. Clelland CD, Choi M, Romberg C, Clemenson GD, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325(5937):210–213.  https://doi.org/10.1126/science.1173215 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coggeshall RE, Lekan HA (1996) Methods for determining numbers of cells and synapses: a case for more uniform standards of review. J Comp Neurol 364(1):6–15.  https://doi.org/10.1002/cne.903690102 CrossRefPubMedGoogle Scholar
  15. Connor PD, Sampson PD, Bookstein FL, Barr HM, Streissguth AP (2000) Direct and indirect effects of prenatal alcohol damage on executive function. Dev Neuropsychol 18(3):331–354.  https://doi.org/10.1207/S1532694204Connor CrossRefPubMedGoogle Scholar
  16. Crede S, Sinanovic E, Adnam C, London L (2011) The utilization of health care services by children with Foetal alcohol syndrome in the western cape, South Africa. Drug Alcohol Depend 115(3):175–182.  https://doi.org/10.1016/j.drugalcdep.2010.10.019 CrossRefPubMedGoogle Scholar
  17. Cudd TA (2005) Animal model systems for the study of alcohol teratology. Exp Biol Med 230(6):389–393.  https://doi.org/10.1177/15353702-0323006-06 CrossRefGoogle Scholar
  18. Erasso DM, Chaparro RE, del Rio CEQ, Karlnoski R, Camporesi EM, Saporta S (2012) Quantitative assessment of new cell proliferation in the dentate gyrus and learning after isoflurane or propofol anesthesia in young and aged rats. Brain Res 1441:38–46.  https://doi.org/10.1016/j.brainres.2011.11.025 CrossRefPubMedGoogle Scholar
  19. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317.  https://doi.org/10.1038/3305 CrossRefPubMedGoogle Scholar
  20. Fuglestad AJ, Whitely ML, Carlson SM, Boys CJ, Eckerle JK, Fink BA, Wozniak JR (2015) Executive functioning deficits in preschool children with fetal alcohol spectrum disorders. Child Neuropsychol 21(6):716–731.  https://doi.org/10.1080/09297049.2014.933792 CrossRefPubMedGoogle Scholar
  21. Fuss J, Ben Abdullah NMB, Vogt MA, Touma C, Pacifici PG, Palme R, Witzemann V, Hellweg R, Gass P (2010) Voluntary exercise induces anxiety-like behavior in adult C57BL/6J mice correlating with hippocampal neurogenesis. Hippocampus 20:364–376.  https://doi.org/10.1002/hipo.20634 PubMedGoogle Scholar
  22. Gil-Mohapel J, Boehme F, Kainer L, Christie BR (2010) Hippocampal cell loss and neurogenesis after fetal alcohol exposure: insights from different rodent models. Brain Res Rev 64(2):283–303.  https://doi.org/10.1016/j.brainresrev.2010.04.011 CrossRefPubMedGoogle Scholar
  23. Gil-Mohapel J, Boehme F, Patten A, Cox A, Kainer L, Giles E, Brocardo PS, Christie BR (2011) Altered adult hippocampal neuronal maturation in a rat model of fetal alcohol syndrome. Brain Res 1384:29–41.  https://doi.org/10.1016/j.brainres.2011.01.116 CrossRefPubMedGoogle Scholar
  24. Gil-Mohapel J, Titterness A, Patten A, Taylor S, Ratzlaff A, Ratzlaff T, Helfer J, Christie B (2014) Prenatal ethanol exposure differentially affects hippocampal neurogenesis in the adolescent and aged brain. Neuroscience 273:174–188.  https://doi.org/10.1016/j.neuroscience.2014.05.012 CrossRefPubMedGoogle Scholar
  25. Gil-Perotin SG, Alvarez-Buylla A, García-Verdugo JM (2009) Identification and characterization of neural progenitor cells in the adult mammalian brain: 203 advances in anatomy, embryology and cell biology. Springer, New YorkGoogle Scholar
  26. Godin EA, Dehart DB, Parnell SE, O’Leary-Moore SK, Sulik KK (2011) Ventromedian forebrain dysgenesis follows early prenatal ethanol exposure in mice. Neurotoxicol Teratol 33(2):231–239.  https://doi.org/10.1016/j.ntt.2010.11.001 CrossRefPubMedGoogle Scholar
  27. Gundersen H, Bagger P, Bendtsen T, Evans S, Korbo L, Marcussen N, Møller A, Nielsen K, Nyengaard J, Pakkenberg B (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96(7-12):857–881.  https://doi.org/10.1111/j.1699-0463.1988.tb00954.x CrossRefPubMedGoogle Scholar
  28. Haycock PC, Ramsay M (2009) Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region. Biol Reprod 81(4):618–627.  https://doi.org/10.1095/biolreprod.108.074682 CrossRefPubMedGoogle Scholar
  29. Helfer JL, Goodlett CR, Greenough WT, Klintsova AY (2009) The effects of exercise on adolescent hippocampal neurogenesis in a rat model of binge alcohol exposure during the brain growth spurt. Brain Res 1294:1–11.  https://doi.org/10.1016/j.brainres.2009.07.090 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hellemans KG, Sliwowska JH, Verma P, Weinberg J (2010) Prenatal alcohol exposure: fetal programming and later life vulnerability to stress, depression and anxiety disorders. Neurosci Biobehav Rev 34(6):791–807.  https://doi.org/10.1016/j.neubiorev.2009.06.004 CrossRefPubMedGoogle Scholar
  31. Ieraci A, Herrera DG (2007) Single alcohol exposure in early life damages hippocampal stem/progenitor cells and reduces adult neurogenesis. Neurobiol Dis 26(3):597–605.  https://doi.org/10.1016/j.nbd.2007.02.011 CrossRefPubMedGoogle Scholar
  32. Ikonomidou C, Bittigau P, Ishimaru MJ, Wozniak DF, Koch C, Genz K, Price MT, Stefovska V, Hörster F, Tenkova T, Dikranian K (2000) Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287(5455):1056–1060.  https://doi.org/10.1126/science.287.5455.1056 CrossRefPubMedGoogle Scholar
  33. Incerti M, Vink J, Roberson R, Wood L, Abebe D, Spong CY (2010) Reversal of alcohol-induced learning deficits in the young adult in a model of fetal alcohol syndrome. Obstet Gynecol 115(2, Part 1):350–356.  https://doi.org/10.1097/AOG.0b013e3181cb59da CrossRefPubMedGoogle Scholar
  34. Ipsiroglu OS, McKellin WH, Carey N, Loock C (2013) "They silently live in terror..." why sleep problems and night-time related quality-of-life are missed in children with a fetal alcohol spectrum disorder. Soc Sci Med 79:76–83.  https://doi.org/10.1016/j.socscimed.2012.10.027 CrossRefPubMedGoogle Scholar
  35. Kempermann G, Gast D, Kronenberg G (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130(2):391–399.  https://doi.org/10.1242/dev.00203 CrossRefPubMedGoogle Scholar
  36. Kliegel MA, Jager T, Altgassen M, Shum D (2008) Clinical neuropsychology of prospective memory. In: Kliegel M, McDaniel MA, Einstein GO (eds) Prospective memory: cognitive, neuroscience, developmental, and applied perspectives. Lawrence Erlbaum Associates, New York, pp 283–303Google Scholar
  37. Klintsova AY, Helfer JL, Calizo LH, Dong WK, Goodlett CR, Greenough WT (2007) Persistent impairment of hippocampal neurogenesis in young adult rats following early postnatal alcohol exposure. Alcohol Clin Exp Res 31(12):2073–2082.  https://doi.org/10.1111/j.1530-0277.2007.00528.x CrossRefPubMedGoogle Scholar
  38. Knezovich JG, Ramsay M (2012) The effect of preconception paternal alcohol expisure on epigenetic remodeling of the H19 and Rasgrf1 imprinting control regions in mouse offspring. Front Genet 3:10.  https://doi.org/10.3389/fgene.2012.00010 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lazarov O, Hollands C (2016) Hippocampal neurogenesis: learning to remember. Prog Neurobiol 138:1-18:1–18.  https://doi.org/10.1016/j.pneurobio.2015.12.006 CrossRefGoogle Scholar
  40. Lee J, Duan W, Long JM, Ingram DK, Mattson MP (2000) Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci 15(2):99–108.  https://doi.org/10.1385/JMN:15:2:99 CrossRefPubMedGoogle Scholar
  41. Livy D, Miller EK, Maier SE, West JR (2003) Fetal alcohol exposure and temporal vulnerability: effects of binge-like alcohol exposure on the developing rat hippocampus. Neurotoxicol Teratol 25(4):447–458.  https://doi.org/10.1016/s0892-0362(03)00030-8 CrossRefPubMedGoogle Scholar
  42. Marino MD, Aksenov MY, Kelly SJ (2004) Vitamin E protects against alcohol-induced cell loss and oxidative stress in the neonatal rat hippocampus. Int J Dev Neurosci 22(5-6):363–377.  https://doi.org/10.1016/j.ijdevneu.2004.04.005 CrossRefPubMedGoogle Scholar
  43. May PA, Gossage JP, Marais AS, Adnams CM, Hoyme HE, Jones KL, Robinson LK, Khaole NC, Snell C, Kalberg WO, Hendricks L, Brooke L, Stellavato C, Viljoen DL (2007) The epidemiology of fetal alcohol syndrome and partial FAS in a south African community. Drug Alcohol Depend 88(2-3):259–271.  https://doi.org/10.1016/j.drugalcdep.2006.11.007 CrossRefPubMedGoogle Scholar
  44. May PA, Keaster C, Bozeman R, Goodover J, Blankenship J, Kalberg WO, Buckley D, Brooks M, Hasken J, Gossage JP, Robinson LK, Manning M, Robinson LK (2015) Prevalence and characteristics of fetal alcohol syndrome and partial fetal alcohol syndrome in a Rocky Mountain Region City. Drug Alcohol Depend 155:118–127.  https://doi.org/10.1016/j.drugalcdep.2015.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  45. May PA, de Vries MM, Marais AS, Kalberg WO, Adnams CM, Hasken JM, Tabachnick B, Robinson LK, Manning MA, Jones KL, Hoyme D, Seedat S, Parry CD, Hoyme HE (2016) The continuum of fetal alcohol spectrum disorders in four rural communities in South Africa: prevalence and characteristics. Drug Alcohol Depend 159:207–218.  https://doi.org/10.1016/j.drugalcdep.2015.12.023 CrossRefPubMedGoogle Scholar
  46. Miller MW (1995) Generation of neurons in the rat dentate gyrus and hippocampus: effects of prenatal and postnatal treatment with ethanol. Alcohol Clin Exp Res 19(6):1500–1509.  https://doi.org/10.1111/j.1530-0277.1995.tb01014.x CrossRefPubMedGoogle Scholar
  47. Mirescu C, Gould E (2006) Stress and Adult Neurogenesis. Hippocampus 16(3):233–238.  https://doi.org/10.1002/hipo.20155 CrossRefPubMedGoogle Scholar
  48. Mirescu C, Peters JD, Gould E (2004) Early life experience alters response of adult neurogenesis to stress. Nat Neurosci 7(8):841–846.  https://doi.org/10.1038/nn1290 CrossRefPubMedGoogle Scholar
  49. Mouton PR, Kelley-Bell B, Tweedie D, Spangler EL, Perez E, Carlson OD, Short RG, de Cabo R, Chang J, Ingram DK, Li Y, Greig NH (2012) The effects of age and lipopolysaccharide (LPS)-mediated peripheral inflammation on numbers of central catecholaminergic neurons. Neurobiol Aging 33(2):423.e27–423.e36.  https://doi.org/10.1016/j.neurobiolaging.2010.09.025 CrossRefGoogle Scholar
  50. Nada MB, Slomianka L, Vyssotski AL, Lipp HP (2010) Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging 31(1):151–161.  https://doi.org/10.1016/j.neurobiolaging.2008.03.002 CrossRefGoogle Scholar
  51. Niccols A (2007) Fetal alcohol syndrome and the developing socio-emotional brain. Brain Cogn 65(1):135–142.  https://doi.org/10.1016/j.bandc.2007.02.009 CrossRefPubMedGoogle Scholar
  52. Nixon K, Crews FT (2002) Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J Neurochem 83(5):1087–1093.  https://doi.org/10.1046/j.1471-4159.2002.01214.x CrossRefPubMedGoogle Scholar
  53. Noori HR, Fornal CA (2011) The appropriateness of unbiased optical fractionators to assess cell proliferation in the adult hippocampus. Front Neurosci 5:140.  https://doi.org/10.3389/fnins.2011.00140 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Oladehin A, Margret CP, Maier SE, Li CX, Jan TA, Chappell TD, Waters RS (2007) Early postnatal alcohol exposure reduced the size of vibrissal barrel field in rat somatosensory cortex (SI) but did not disrupt barrel field organization. Alcohol 41(4):253–261.  https://doi.org/10.1016/j.alcohol.2007.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Opendak M, Briones BA, Gould E (2016) Social behavior, hormones and adult neurogenesis. Front Neuroendocrinol 41:71–86.  https://doi.org/10.1016/j.yfrne.2016.02.002 CrossRefPubMedGoogle Scholar
  56. Parnell SE, O’Leary-Moore SK, Godin EA, Dehart DB, Johnson BW, Allan Johnson G, Styner MA, Sulik KK (2009) Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 8. Alcohol Clin Exp Res 33:1001–1011. doi: https://doi.org/10.1111/j.1530-0277.2009.00921.x, 6
  57. Patten AR, Fontaine CJ, Christie BR (2014) A comparison of the different animal models of fetal alcohol spectrum disorders and their use in studying complex behaviors. Front Pediatr 2:1–19.  https://doi.org/10.3389/fped.2014.00093 CrossRefGoogle Scholar
  58. Patzke N, Spocter MA, Karlsson KÆ, Bertelsen MF, Haagensen M, Chawana R, Streicher S, Kaswera C, Gilissen E, Alagaili AN, Mohammed OB, Reep RL, Bennett NC, Siegel JM, Ihunwo AO, Manger PR (2015) In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct 220(1):361–383.  https://doi.org/10.1007/s00429-013-0660-1 CrossRefPubMedGoogle Scholar
  59. Pawlak R, Skrzypiec A, Sulkowski S, Buczko W (2002) Ethanol-induced neurotoxicity is counterbalanced by increased cell proliferation in mouse dentate gyrus. Neurosci Lett 327(2):83–86.  https://doi.org/10.1016/S0304-3940(02)00369-5 CrossRefPubMedGoogle Scholar
  60. Redila VA, Olson AK, Swann SE, Mohades G, Webber AJ, Weinberg J, Christie BR (2006) Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise. Hippocampus 16(3):305–311.  https://doi.org/10.1002/hipo.20164 CrossRefPubMedGoogle Scholar
  61. Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC (2005) Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav 84(1):53–63.  https://doi.org/10.1016/j.physbeh.2004.10.007 CrossRefPubMedGoogle Scholar
  62. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472(7344):466–470.  https://doi.org/10.1038/nature09817 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Segi-Nishida E, Warner-Schmidt JL, Duman RS (2008) Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus. Proc Natl Acad Sci U S A 105(32):11352–11357.  https://doi.org/10.1073/pnas.0710858105 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Shors TJ, Mathew J, Sisti HM, Edgecomb C, Beckoff S, Dalla C (2007) Neurogenesis and helplessness are mediated by controllability in males but not in females. Biol Psychiatry 62(5):487–495.  https://doi.org/10.1016/j.biopsych.2006.10.033 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sliwowska JH, Barker JM, Barha C, Ellis L, Yu W, Galea LAM, Weinberg J (2006) Altered hippocampal neurogenesis in adult male rats after prenatal ethanol exposure. Front Neuroendocrinol 27(1):100–101.  https://doi.org/10.1016/j.yfrne.2006.03.238 CrossRefGoogle Scholar
  66. Sliwowska JH, Barker JM, Barha CK, Lan N, Weinberg J, Galea LAM (2010) Stress-induced suppression of hippocampal neurogenesis in adult male rats is altered by prenatal ethanol exposure. Stress 13(4):302–314.  https://doi.org/10.3109/10253890903531582 CrossRefGoogle Scholar
  67. Sulik KK (2005) Genesis of alcohol-induced craniofacial dysmorphism. Exp Biol Med 230(6):366–375.  https://doi.org/10.1177/15353702-0323006-04 CrossRefGoogle Scholar
  68. Sulik KK, Johnston MC, Webb MA (1981) Fetal alcohol syndrome: embryogenesis in a mouse model. Science 214(4523):936–938.  https://doi.org/10.1126/science.6795717 CrossRefPubMedGoogle Scholar
  69. Tran TD, Kelly SJ (2003) Critical periods for ethanol-induced cell loss in the hippocampal formation. Neurotoxicol Teratol 25(5):519–528.  https://doi.org/10.1016/s0892-0362(03)00074-6 CrossRefPubMedGoogle Scholar
  70. Treves A, Tashiro A, Witter MP, Moser EI (2008) What is the mammalian dentate gyrus good for? Neuroscience 154(4):1155–1172.  https://doi.org/10.1016/j.neuroscience.2008.04.073 CrossRefPubMedGoogle Scholar
  71. Tronel S, Fabre A, Charrier V, Oliet SH, Gage FH, Abrous DN (2010) Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proc Natl Acad Sci U S A 107(17):7963–7969.  https://doi.org/10.1073/pnas.0914613107 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Turner PV, Brabb T, Pekow C, Vasbinder MA (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50(5):600–613PubMedPubMedCentralGoogle Scholar
  73. Uban KA, Sliwowska JH, Lieblich S, Ellis LA, WK Y, Weinberg J, Galea LAM (2010) Prenatal alcohol exposure reduces the proportion of newly produced neurons and glia in the dentate gyrus of the hippocampus in female rats. Horm Behav 58(5):835–843.  https://doi.org/10.1016/j.yhbeh.2010.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Uecker A, Nadel L (1996) Spatial locations gone awry: object and spatial memory deficits in children with fetal alcohol syndrome. Neuropsychologia 34(3):209–223.  https://doi.org/10.1016/0028-3932(95)00096-8 CrossRefPubMedGoogle Scholar
  75. Webster WS, Walsh DA, Lipson AH, McEwen SE (1980) Teratogenesis after acute alcohol exposure in inbred and outbred mice. Neurotoxicol Teratol 2:227–234Google Scholar
  76. Webster W, Walsh D, McEwen SE, Lipson A (1983) Some teratogenic properties of ethanol and acetaldehyde in C57BL/6J mice: implications for the study of the fetal alcohol syndrome. Teratology 27(2):231–243.  https://doi.org/10.1002/tera.1420270211 CrossRefPubMedGoogle Scholar
  77. Weinberg J, Sliwowska JH, Lan N, Hellemans KGC (2008) Prenatal alcohol exposure: Foetal programming, the hypothalamic-pituitary-adrenal Axis and sex differences in outcome. J Neuroendocrinol 20(4):470–488.  https://doi.org/10.1111/j.1365-2826.2008.01669.x CrossRefPubMedGoogle Scholar
  78. West MJ (1993) New stereological methods for counting neurons. Neurobiol Aging 14(4):275–285.  https://doi.org/10.1016/0197-4580(93)90112-O CrossRefPubMedGoogle Scholar
  79. Westenbroek C, Den Boer JA, Veenhuis M, Ter Horst GJ (2004) Chronic stress and social housing differentially affect neurogenesis in male and female rats. Brain Res Bull 64(4):303–308.  https://doi.org/10.1016/j.brainresbull.2004.08.006 CrossRefPubMedGoogle Scholar
  80. Willoughby KA, Sheard ED, Nash K, Rovet J (2008) Effects of prenatal alcohol exposure on hippocampal volume, verbal learning, and verbal and spatial recall in late childhood. J Int Neuropsychol Soc 14(06):1022–1033.  https://doi.org/10.1017/S1355617708081368 CrossRefPubMedGoogle Scholar
  81. Wozniak DF, Hartman RE, Boyle MP, Vogt SK, Brooks AR, Tenkova T, Young C, Olney JW, Muglia LJ (2004) Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiol Dis 17(3):403–414.  https://doi.org/10.1016/j.nbd.2004.08.006 CrossRefPubMedGoogle Scholar
  82. Zharkovsky T, Kaasik A, Jaako K, Zharkovsky A (2003) Neurodegeneration and production of the new cells in the dentate gyrus of juvenile rat hippocampus after a single administration of ethanol. Brain Res 978(1-2):115–123.  https://doi.org/10.1016/S0006-8993(03)02796-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Oladiran I. Olateju
    • 1
  • Muhammad A. Spocter
    • 1
    • 2
  • Nina Patzke
    • 1
  • Amadi O. Ihunwo
    • 1
  • Paul R. Manger
    • 1
  1. 1.School of Anatomical Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgRepublic of South Africa
  2. 2.Department of AnatomyDes Moines UniversityDes MoinesUSA

Personalised recommendations