Advertisement

Metabolic Brain Disease

, Volume 31, Issue 4, pp 749–759 | Cite as

The known and missing links between Toxoplasma gondii and schizophrenia

  • Hany M. Elsheikha
  • Dietrich Büsselberg
  • Xing-Quan Zhu
Review Article

Abstract

Toxoplasma gondii, an intracellular protozoan parasite, has a striking predilection for infecting the Central Nervous System and has been linked to an increased incidence of a number of psychiatric diseases. Several in vitro and in vivo studies have shown that T. gondii infection can affect the structure, bioenergetics and function of brain cells, and alters several host cell processes, including dopaminergic, tryptophan-kynurenine, GABAergic, AKT1, Jak/STAT, and vasopressinergic pathways. These mechanisms underlying the neuropathology of latent toxoplasmosis seem to operate also in schizophrenia, supporting the link between the two disorders. Better understanding of the intricate parasite-neuroglial communications holds the key to unlocking the mystery of T. gondii-mediated schizophrenia and offers substantial prospects for the development of disease-modifying therapies.

Keywords

Toxoplasma gondii Schizophrenia Mental illness Psychosis Host-pathogen interaction 

Notes

Acknowledgments

We apologize to colleagues whose work we were unable to adequately cite due to space limitation. We thank Dr Carl Stevenson from the University of Nottingham for comments on the manuscript. XQZ is supported by the National Natural Science Foundation of China (Grant No. 31230073).

References

  1. Bentivoglio M, Mariotti R, Bertini G (2011) Neuroinflammation and brain infections: historical context and current perspectives. Brain Res Rev 66(1–2):152–173PubMedCrossRefGoogle Scholar
  2. Berenreiterová M, Flegr J, Kuběna AA, Němec P (2011) The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis. PLoS One 6, e28925PubMedPubMedCentralCrossRefGoogle Scholar
  3. Berk M, Dodd S, Kauer-Sant’anna M, Malhi GS, Bourin M, Kapczinski F, Norman T (2007) Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand Suppl 434:41–49PubMedCrossRefGoogle Scholar
  4. Berretta S (2012) Extracellular matrix abnormalities in schizophrenia. Neuropharmacology 62:1584–1597PubMedCrossRefGoogle Scholar
  5. Bhadra R, Cobb DA, Weiss LM, Khan IA (2013) Psychiatric disorders in toxoplasma seropositive patients-The CD8 connection. Schizophr Bull 39:485–489PubMedPubMedCentralCrossRefGoogle Scholar
  6. Blanchard N, Dunay IR, Schluter D (2015) Persistence of Toxoplasma gondii in the central nervous system: a fine-tuned balance between the parasite, the brain and the immune system. Parasite Immunol 37:150–158PubMedCrossRefGoogle Scholar
  7. Bradshaw NJ, Porteous DJ (2012) DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 62(3):1230–1241PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Müller T, Wende H, Stassart RM, Nawaz S, Humml C, Velanac V, Radyushkin K, Goebbels S, Fischer TM, Franklin RJ, Lai C, Ehrenreich H, Birchmeier C, Schwab MH, Nave KA (2008) Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59:581–595PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, Bogerts B, Braun K, Jankowski Z, Kumaratilake J, Henneberg M, Gos T (2014) The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatr 5:47Google Scholar
  10. Brooks JM, Carrillo GL, Su J, Lindsay DS, Fox MA, Blader IJ (2015) Toxoplasma gondii infections alter GABAergic synapses and signaling in the central nervous system. MBio 6(6):e01428–15PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167:261–280PubMedPubMedCentralCrossRefGoogle Scholar
  12. Buonanno A, Kwon OB, Yan L, Gonzalez C, Longart M, Hoffman D, Vullhorst D (2008) Neuregulins and neuronal plasticity: possible relevance in schizophrenia. Novartis Found Symp 289:165–177PubMedCrossRefGoogle Scholar
  13. Carter CJ (2006) Schizophrenia susceptibility genes converge on interlinked pathways related to glutamatergic transmission and long-term potentiation, oxidative stress and oligodendrocyte viability. Schizophr Res 86:1–14PubMedCrossRefGoogle Scholar
  14. Carter CJ (2007) eIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia? Schizophr Bull 33:1343–1353PubMedPubMedCentralCrossRefGoogle Scholar
  15. Carter CJ (2009) Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii. Schizophr Bull 35(6):1163–1182PubMedCrossRefGoogle Scholar
  16. Clark RT, Nance JP, Noor S, Wilson EH (2011) T-cell production of matrix metalloproteinases and inhibition of parasite clearance by TIMP-1 during chronic Toxoplasma infection in the brain. ASN Neuro 3, e00049PubMedPubMedCentralCrossRefGoogle Scholar
  17. da Silva RC, Langoni H (2009) Toxoplasma gondii: host-parasite interaction and behavior manipulation. Parasitol Res 105(4):893–898Google Scholar
  18. Dickerson F, Stallings C, Origoni A, Boronow J, Yolken R (2007) C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia. Schizophr Res 93:261–265PubMedCrossRefGoogle Scholar
  19. Dickerson F, Stallings C, Origoni A, Vaughan C, Khushalani S, Yang S, Yolken R (2013) C-reactive protein is elevated in schizophrenia. Schizophr Res 143:198–202PubMedCrossRefGoogle Scholar
  20. Eren S, Bayam G, Ergönül O, Celikbaş A, Pazvantoğlu O, Baykam N, Dokuzoğuz B, Dilbaz N (2006) Cognitive and emotional changes in neurobrucellosis. J Infect 53(3):184–189PubMedCrossRefGoogle Scholar
  21. Evans AK, Strassmann PS, Lee IP, Sapolsky RM (2014) Patterns of Toxoplasma gondii cyst distribution in the forebrain associate with individual variation in predator odor avoidance and anxiety-related behavior in male Long-Evans rats. Brain Behav Immun 37:122–133PubMedCrossRefGoogle Scholar
  22. Fabiani S, Pinto B, Bonuccelli U, Bruschi F (2015) Neurobiological studies on the relationship between toxoplasmosis and neuropsychiatric diseases. J Neurol Sci 351:3–8PubMedCrossRefGoogle Scholar
  23. Fekadu A, Shibre T, Cleare AJ (2010) Toxoplasmosis as a cause for behaviour disorders—overview of evidence and mechanisms. Folia Parasitol (Praha) 57(2):105–113CrossRefGoogle Scholar
  24. Flegr J (2007) Effects of Toxoplasma on human behavior. Schizophr Bull 33(3):757–760PubMedPubMedCentralCrossRefGoogle Scholar
  25. Flegr J (2013) Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma–human model in studying the manipulation hypothesis. J Exp Biol 216:127–133PubMedCrossRefGoogle Scholar
  26. Flegr J, Preiss M, Klose J, Havlícek J, Vitáková M, Kodym P (2003) Decreased level of psychobiological factor novelty seeking and lower intelligence in men latently infected with the protozoan parasite Toxoplasma gondii Dopamine, a missing link between schizophrenia and toxoplasmosis? Biol Psychol 63(3):253–268PubMedCrossRefGoogle Scholar
  27. Flegr J, Lindova J, Kodym P (2008) Sex-dependent toxoplasmosis-associated differences in testosterone concentration in humans. Parasitology 135:427–431PubMedCrossRefGoogle Scholar
  28. Flegr J, Lenochova P, Hodny Z, Vondrova M (2011) Fatal attraction phenomenon in humans: cat odour attractiveness increased for Toxoplasma-infected men while decreased for infected women. PLoS Negl Trop Dis 5, e1389PubMedPubMedCentralCrossRefGoogle Scholar
  29. Flynn SW, Lang DJ, Mackay AL, Goghari V, Vavasour IM, Whittall KP, Smith GN, Arango V, Mann JJ, Dwork AJ, Falkai P, Honer WG (2003) Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 8:811–820PubMedCrossRefGoogle Scholar
  30. Fuks JM, Arrighi RBG, Weidner JM, Kumar Mendu S, Jin Z, Wallin RP, Rethi B, Birnir B, Barragan A (2012) GABAergic signaling is linked to a hypermigratory phenotype in dendritic cells infected by Toxoplasma gondii. PLoS Pathog 8(12), e1003051PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gao HM, Zhou H, Hong JS (2014) Oxidative stress, neuroinflammation, and neurodegeneration. In Neuroinflammation and Neurodegeneration, Springer: 81–104Google Scholar
  32. Gaskell EA, Smith JE, Pinney JW, Westhead DR, McConkey GA (2009) A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS One 4, e4801PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gatkowska J, Wieczorek M, Dziadek B, Dzitko K, Dlugonska H (2013) Sex-dependent neurotransmitter level changes in brains of Toxoplasma gondii infected mice. Exp Parasitol 133(1):1–7PubMedCrossRefGoogle Scholar
  34. Ghosh AK, Vaughan DE (2012) PAI-1 in tissue fibrosis. J Cell Physiol 227:493–507PubMedPubMedCentralCrossRefGoogle Scholar
  35. Glaser KC, Hagos B, Molestina RE (2011) Effects of Toxoplasma gondii genotype and absence of host MAL/Myd88 on the temporal regulation of gene expression in infected microglial cells. Exp Parasitol 129:409–413PubMedPubMedCentralCrossRefGoogle Scholar
  36. Goff DC (2015) Drug development in schizophrenia: are glutamatergic targets still worth aiming at? Curr Opin Psychiatr 28:207–215CrossRefGoogle Scholar
  37. Goodwin DG, Strobl J, Mitchell SM, Zajac AM, Lindsay DS (2008) Evaluation of the mood-stabilizing agent valproic acid as a preventative for toxoplasmosis in mice and activity against tissue cysts in mice. J Parasitol 94(2):555–557PubMedCrossRefGoogle Scholar
  38. Goodwin DG, Strobl JS, Lindsay DS (2011) Evaluation of five antischizophrenic agents against Toxoplasma gondii in human cell cultures. J Parasitol 97(1):148–151PubMedCrossRefGoogle Scholar
  39. Guidetti P, Schwarcz R (2003) 3-Hydroxykynurenine and quinolinate: pathogenic synergism in early grade Huntington’s disease? Adv Exp Med Biol 527:137–145PubMedCrossRefGoogle Scholar
  40. Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49:15–23PubMedCrossRefGoogle Scholar
  41. Guillemin GJ, Meininger V, Brew BJ (2006) Implications for the kynurenine pathway and quinolinic acid in amyotrophic lateral sclerosis. Neurodegener Dis 2:166–176CrossRefGoogle Scholar
  42. Guo Q, Manolopoulou M, Bian Y, Schilling AB, Tang WJ (2010) Molecular basis for the recognition and cleavages of IGF-II, TGF-alpha, and amylin by human insulin-degrading enzyme. J Mol Biol 395(2):430–443PubMedCrossRefGoogle Scholar
  43. Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E, Dodel R, Ekman M, Faravelli C, Fratiglioni L, Gannon B, Jones DH, Jennum P, Jordanova A, Jönsson L, Karampampa K, Knapp M, Kobelt G, Kurth T, Lieb R, Linde M, Ljungcrantz C, Maercker A, Melin B, Moscarelli M, Musayev A, Norwood F, Preisig M, Pugliatti M, Rehm J, Salvador-Carulla L, Schlehofer B, Simon R, Steinhausen HC, Stovner LJ, Vallat JM, Van den Bergh P, van Os J, Vos P, Xu W, Wittchen HU, Jönsson B, Olesen J, CDBE2010Study Group (2011) Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21:718–779PubMedCrossRefGoogle Scholar
  44. Hajagos BE, Turetzky JM, Peng ED, Cheng SJ, Ryan CM, Souda P, Whitelegge JP, Lebrun M, Dubremetz JF, Bradley PJ (2012) Molecular dissection of novel trafficking and processing of the Toxoplasma gondii rhoptry metalloprotease toxolysin-1. Traffic 13(2):292–304PubMedCrossRefGoogle Scholar
  45. Hans A, Bajramovic JJ, Syan S, Perret E, Dunia I, Brahic M, Gonzalez-Dunia D (2004) Persistent, noncytolytic infection of neurons by Borna disease virus interferes with ERK 1/2 signaling and abrogates BDNF-induced synaptogenesis. FASEB J 18(7):863–865PubMedGoogle Scholar
  46. Hari Dass SA, Vyas A (2014) Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala. Mol Ecol 23:6114–6122PubMedCrossRefGoogle Scholar
  47. Haroon F, Händel U, Angenstein F, Goldschmidt J, Kreutzmann P, Lison H, Fischer KD, Scheich H, Wetzel W, Schlüter D, Budinger E (2012) Toxoplasma gondii actively inhibits neuronal function in chronically infected mice. PLoS One 7, e35516PubMedPubMedCentralCrossRefGoogle Scholar
  48. Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:593–624PubMedCrossRefGoogle Scholar
  49. Hinze-Selch D, Däubener W, Eggert L, Erdag S, Stoltenberg R, Wilms S (2007) A controlled prospective study of toxoplasma gondii infection in individuals with schizophrenia: beyond seroprevalence. Schizophr Bull 33:782–788PubMedPubMedCentralCrossRefGoogle Scholar
  50. Holub D, Flegr J, Dragomirecká E, Rodriguez M, Preiss M, Novák T, Čermák J, Horáček J, Kodym P, Libiger J, Höschl C, Motlová LB (2013) Differences in onset of disease and severity of psychopathology between toxoplasmosis-related and toxoplasmosis-unrelated schizophrenia. Acta Psychiatr Scand 127:227–238PubMedCrossRefGoogle Scholar
  51. Horacek J, Flegr J, Tintera J, Verebova K, Spaniel F, Novak T, Brunovsky M, Bubenikova-Valesova V, Holub D, Palenicek T, Höschl C (2012) Latent toxoplasmosis reduces gray matter density in schizophrenia but not in controls: voxel-based-morphometry (VBM) study. World J Biol Psychiatry 13:501–509PubMedCrossRefGoogle Scholar
  52. Howes O, McCutcheon R, Stone J (2015) Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol 29:97–115PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hunter CA, Sibley LD (2012) Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat Rev Microbiol 10:766–778PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ingram WM, Goodrich LM, Robey EA, Eisen MB (2013) Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance. PLoS One 8, e75246PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jones MR, Quinton LJ, Simms BT, Lupa MM, Kogan MS, Mizgerd JP (2006) Roles of interleukin-6 in activation of STAT proteins and recruitment of neutrophils during Escherichia coli pneumonia. J Infect Dis 193(3):360–369PubMedCrossRefGoogle Scholar
  56. Jones-Brando L, Torrey EF, Yolken R (2003) Drugs used in the treatment of schizophrenia and bipolar disorder inhibit the replication of Toxoplasma gondii. Schizophr Res 62(3):237–244PubMedCrossRefGoogle Scholar
  57. Jung BK, Pyo KH, Shin KY, Hwang YS, Lim H, Lee SJ, Moon JH, Lee SH, Suh YH, Chai JY, Shin EH (2012) Toxoplasma gondii infection in the brain inhibits neuronal degeneration and learning and memory impairments in a murine model of Alzheimer’s disease. PLoS ONE 7(3), e33312PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kalichman SC, Heckman T, Kochman A, Sikkema K, Bergholte J (2000) Depression and thoughts of suicide among middle-aged and older persons living with HIV-AIDS. Psychiatr Serv 51(7):903–907PubMedCrossRefGoogle Scholar
  59. Kegel ME, Bhat M, Skogh E, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schwieler L, Engberg G, Schuppe-Koistinen I, Erhardt S (2014) Imbalanced kynurenine pathway in schizophrenia. Int J Tryptophan Res 7:15–22PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kendler KS, Diehl SR (1993) The genetics of schizophrenia: a current, genetic-epidemiologic perspective. Schizophr Bull 19:261–284PubMedCrossRefGoogle Scholar
  61. Kim CH, Koo MS, Cheon KA, Ryu YH, Lee JD, Lee HS (2003) Dopamine transporter density of basal ganglia assessed with [123I] IPT SPET in obsessive–compulsive disorder. Eur J Nucl Med Mol Imaging 30:1637–1643PubMedCrossRefGoogle Scholar
  62. Kusbeci OY, Miman O, Yaman M, Aktepe OC, Yazar S (2011) Could Toxoplasma gondii have any role in Alzheimer disease? Alzheimer Dis Assoc Disord 25:1–3PubMedCrossRefGoogle Scholar
  63. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36(2):764–785PubMedCrossRefGoogle Scholar
  64. Li H, Gang Z, Yuling H, Luokun X, Jie X, Hao L et al (2006) Different neurotropic pathogens elicit neurotoxic CCR9- or neurosupportive CXCR3-expressing microglia. J Immunol 177(6):3644–3656PubMedCrossRefGoogle Scholar
  65. Lim A, Kumar V, Hari Dass SA, Vyas A (2013) Toxoplasma gondii infection enhances testicular steroidogenesis in rats. Mol Ecol 22:102–110PubMedCrossRefGoogle Scholar
  66. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33(2):177–182PubMedCrossRefGoogle Scholar
  67. Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S (2004) Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis 15:618–629PubMedCrossRefGoogle Scholar
  68. Miller CM, Boulter NR, Ikin RJ, Smith NC (2009) The immunobiology of the innate response to Toxoplasma gondii. Int J Parasitol 39:23–39PubMedCrossRefGoogle Scholar
  69. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70:663–671PubMedPubMedCentralCrossRefGoogle Scholar
  70. Miman O, Kusbeci OY, Aktepe OC, Cetinkaya Z (2010) The probable relation between Toxoplasma gondii and Parkinson’s disease. Neurosci Lett 475:129–131PubMedCrossRefGoogle Scholar
  71. Mitra R, Sapolsky RM, Vyas A (2013) Toxoplasma gondii infection induces dendritic retraction in basolateral amygdala accompanied by reduced corticosterone secretion. Dis Model Mech 6:516–520PubMedCrossRefGoogle Scholar
  72. Montoya JG, Liesenfeld O (2004) Toxoplasmosis. Lancet 363:1965–1976PubMedCrossRefGoogle Scholar
  73. Mortensen PB, Nørgaard-Pedersen B, Waltoft BL, Sørensen TL, Hougaard D, Yolken RH (2007) Early infections of Toxoplasma gondii and the later development of schizophrenia. Schizophr Bull 33(3):741–744PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mou X, Peterson CB, Prosser RA (2009) Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clock in vitro. Eur J Neurosci 30:1451–1460PubMedCrossRefGoogle Scholar
  75. Notarangelo FM, Wilson EH, Horning KJ, Thomas MA, Harris TH, Fang Q, Hunter CA, Schwarcz R (2014) Evaluation of kynurenine pathway metabolism in Toxoplasma gondii-infected mice: implications for schizophrenia. Schizophr Res 152:261–267Google Scholar
  76. Ogden KK, Traynelis SF (2011) New advances in NMDA receptor pharmacology. Trends Pharmacol Sci 32:726–733PubMedPubMedCentralCrossRefGoogle Scholar
  77. Okulski P, Jay TM, Jaworski J, Duniec K, Dzwonek J, Konopacki FA, Wilczynski GM, Sánchez-Capelo A, Mallet J, Kaczmarek L (2007) TIMP-1 abolishes MMP-9-dependent long-lasting long-term potentiation in the prefrontal cortex. Biol Psychiatry 62:359–362PubMedCrossRefGoogle Scholar
  78. Okusaga O, Duncan E, Langenberg P, Brundin L, Fuchs D, Groer MW, Giegling I, Stearns-Yoder KA, Hartmann AM, Konte B, Friedl M, Brenner LA, Lowry CA, Rujescu D, Postolache TT (2016) Combined Toxoplasma gondii seropositivity and high blood kynurenine - Linked with nonfatal suicidal self-directed violence in patients with schizophrenia. J Psychiatr Res 72:74–81PubMedCrossRefGoogle Scholar
  79. Parlog A, Schlüter D, Dunay IR (2015) Toxoplasma gondii-induced neuronal alterations. Parasite Immunol 37(3):159–710PubMedCrossRefGoogle Scholar
  80. Poirotte C, Kappeler PM, Ngoubangoye B, Bourgeois S, Moussodji M, Charpentier MJ (2016) Morbid attraction to leopard urine in Toxoplasma-infected chimpanzees. Curr Biol 26(3):R98–9PubMedCrossRefGoogle Scholar
  81. Prandota J (2010) Neuropathological changes and clinical features of autism spectrum disorder participants are similar to that reported in congenital and chronic cerebral toxoplasmosis in humans and mice. Res Autism Spect Disord 4:103–118CrossRefGoogle Scholar
  82. Prandovszky E, Gaskell E, Martin H, Dubey JP, Webster JP, McConkey GA (2011) The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS One 6(9), e23866PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rozenfeld C, Martinez R, Seabra S, Sant’anna C, Gonçalves JG, Bozza M, Moura-Neto V, De Souza W (2005) Toxoplasma gondii prevents neuron degeneration by interferon-gamma-activated microglia in a mechanism involving inhibition of inducible nitric oxide synthase and transforming growth factor-beta1 production by infected microglia. Am J Pathol 167:1021–1031PubMedPubMedCentralCrossRefGoogle Scholar
  84. Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET, Ajioka JW, Boothroyd JC (2006) Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314(5806):1780–1783PubMedPubMedCentralCrossRefGoogle Scholar
  85. Schwarcz R, Hunter CA (2007) Toxoplasma gondii and schizophrenia: linkage through astrocyte-derived kynurenic acid? Schizophr Bull 33:652–653PubMedPubMedCentralCrossRefGoogle Scholar
  86. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10PubMedCrossRefGoogle Scholar
  87. Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50:521–530PubMedCrossRefGoogle Scholar
  88. Semiz UB, Turhan V, Basoglu C, Oner O, Ebrinc S, Cetin M (2005) Leptospirosis presenting with mania and psychosis: four consecutive cases seen in a military hospital in Turkey. Int J Psychiatry Med 35(3):299–305PubMedCrossRefGoogle Scholar
  89. Skallová A, Kodym P, Frynta D, Flegr J (2006) The role of dopamine in Toxoplasma-induced behavioural alterations in mice: an ethological and ethopharmacological study. Parasitology 133(Pt 5):525–535PubMedCrossRefGoogle Scholar
  90. Stibbs HH (1985) Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice. Ann Trop Med Parasitol 79(2):153–157PubMedGoogle Scholar
  91. Strobl JS, Goodwin DG, Rzigalinski BA, Lindsay DS (2012) Dopamine stimulates propagation of Toxoplasma gondii tachyzoites in human fibroblast and primary neonatal rat astrocyte cell cultures. J Parasitol 98(6):1296–1299PubMedCrossRefGoogle Scholar
  92. Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192PubMedCrossRefGoogle Scholar
  93. Sun GY, Horrocks LA, Farooqui AA (2007) The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103(1):1–16PubMedGoogle Scholar
  94. Sutterland AL, Fond G, Kuin A, Koeter MWJ, Lutter R, vanGool T, Yolken R, Szoke A, Leboyer M, deHaan L (2015) Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr Scand 132(3):161–79PubMedCrossRefGoogle Scholar
  95. Suvisaari J, Loo BM, Saarni SE, Haukka J, Perälä J, Saarni SI, Viertiö S, Partti K, Lönnqvist J, Jula A (2011) Inflammation in psychotic disorders: a population-based study. Psychiatry Res 189:305–311PubMedCrossRefGoogle Scholar
  96. Suzuki Y, Claflin J, Wang X, Lengi A, Kikuchi T (2005) Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. Int J Parasitol 35:83–90PubMedCrossRefGoogle Scholar
  97. Swedo SE, Leonard HL, Rapoport JL (2004) The pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS) subgroup: separating fact from fiction. Pediatrics 113:907–111PubMedCrossRefGoogle Scholar
  98. Taboas W, McKay D, Taylor S (2012) Does Toxoplasma gondii play a role in obsessive-compulsive disorder? Psychiatry Res 198(1):176–177PubMedCrossRefGoogle Scholar
  99. Tan HY, Nicodemus KK, Chen Q, Li Z, Brooke JK, Honea R, Kolachana BS, Straub RE, Meyer-Lindenberg A, Sei Y, Mattay VS, Callicott JH, Weinberger DR (2008) Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J Clin Invest 118:2200–2208PubMedPubMedCentralGoogle Scholar
  100. Tomasik J, Schultz TL, Kluge W, Yolken RH, Bahn S, Carruthers VB (2015) Shared immune and repair markers during experimental Toxoplasma chronic brain infection and schizophrenia. Schizophr BullGoogle Scholar
  101. Van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 64:820–822PubMedCrossRefGoogle Scholar
  102. Van Os J, Kapur S (2009) Schizophrenia. Lancet 374:635–645PubMedCrossRefGoogle Scholar
  103. Vasconcelos AR, Yshii LM, Viel TA, Buck HS, Mattson MP, Scavone C, Kawamoto EM (2014) Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation 11:85PubMedPubMedCentralCrossRefGoogle Scholar
  104. Vega P, Sweetland A, Acha J, Castillo H, Guerra D, Smith Fawzi MC, Shin S (2004) Psychiatric issues in the management of patients with multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 8(6):749–759PubMedGoogle Scholar
  105. Volkow ND, Wang GJ, Tomasi D, Baler RD (2013) Obesity and addiction: neurobiological overlaps. Obes Rev 14:2–18PubMedCrossRefGoogle Scholar
  106. Vyas A, Kim KS, Giacomini N, Boothroyd JC, Sapolsky RM (2007) Behvioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci U S A 104:6442–6447PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wang X, Michie SA, Xu B, Suzuki Y (2007) Importance of IFN-gamma-mediated expression of endothelial VCAM-1 on recruitment of CD8+ T cells into the brain during chronic infection with Toxoplasma gondii. J Interferon Cytokine Res 27:329–338PubMedCrossRefGoogle Scholar
  108. Webster JP, Lamberton PH, Donnelly CA, Torrey EF (2006) Parasites as causative agents of human affective disorders? The impact of anti-psychotic, mood-stabilizer and anti-parasite medication on Toxoplasma gondii’s ability to alter host behaviour. Proc Biol Sci 273(1589):1023–1030PubMedPubMedCentralCrossRefGoogle Scholar
  109. Widner B, Fuchs D, Leblhuber F, Sperner-Unterweger B (2001) Does disturbed homocysteine and folate metabolism in depression result from enhanced oxidative stress? J Neurol Neurosurg Psychiatry 70:419PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wilson EH, Harris TH, Mrass P, John B, Tait ED, Wu GF, Pepper M, Wherry EJ, Dzierzinski F, Roos D, Haydon PG, Laufer TM, Weninger W, Hunter CA (2009) Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30:300–311PubMedPubMedCentralCrossRefGoogle Scholar
  111. Xiao J, Li Y, Jones-Brando L, Yolken RH (2013) Abnormalities of neurotransmitter and neuropeptide systems in human neuroepithelioma cells infected by three Toxoplasma strains. J Neural Transm (Vienna) 120(12):1631–1639CrossRefGoogle Scholar
  112. Zghair KH, AL-Qadhi BN, Mahmood SH (2015) The effect of toxoplasmosis on the level of some sex hormones in males blood donors in Baghdad. J Parasit Dis 39(3):393–400PubMedCrossRefGoogle Scholar
  113. Zhou CX, Zhou DH, Elsheikha HM, Liu GX, Suo X, Zhu XQ (2015) Global metabolomic profiling of mice brains following experimental infection with the cyst-forming Toxoplasma gondii. PLoS One 10(10), e0139635PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zhou CX, Zhou DH, Elsheikha HM, Zhao Y, Suo X, Zhu XQ (2016) Metabolomic profiling of mice serum during toxoplasmosis progression using liquid chromatography-mass spectrometry. Sci Rep 6:19557PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zindler E, Zipp F (2010) Neuronal injury in chronic CNS inflammation. Best Pract Res Clin Anaesthesiol 24:551–562PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hany M. Elsheikha
    • 1
  • Dietrich Büsselberg
    • 2
  • Xing-Quan Zhu
    • 3
  1. 1.Faculty of Medicine and Health Sciences, School of Veterinary Medicine and ScienceUniversity of NottinghamLeicestershireUK
  2. 2.Weill Cornell Medical College in Qatar, Qatar Foundation - Education CityDohaQatar
  3. 3.State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhouPeople’s Republic of China

Personalised recommendations