Metabolic Brain Disease

, Volume 31, Issue 3, pp 693–703 | Cite as

Atorvastatin ameliorates cognitive impairment, Aβ1-42 production and Tau hyperphosphorylation in APP/PS1 transgenic mice

Original Article


Amyloid-beta (Aβ) interacts with the serine/threonine protein kinase AKT (also known as protein kinase B)/glycogen synthase kinase 3β (GSK3β) pathway and deactivates GSK3β signaling, which result in microtubule protein tau phosphorylation. Atorvastatin, a HMG-CoA reductase inhibitor, has been proven to improve learning and memory performance, reduce Aβ and phosphorylated tau levels in mouse model of Alzheimer’s disease (AD). However, it still remains unclear whether atorvastatin is responsible for regulation of AKT/GSK3β signaling and contributes to subsequent down-regulation of Aβ1-42 and phosphorylated tau in APP/PS1 transgenic (Tg APP/PS1) mice. Herein, we aimed to investigate the possible impacts of atorvastatin (10 mg/kg, p.o.) on the memory deficit by behavioral tests and changes of AKT/GSK3β signaling in hippocampus and prefrontal cortex by western blot test in Tg APP/PS1 mice. The results showed that treatment with atorvastatin significantly reversed the memory deficit in the Tg APP/PS1 mice in a novel object recognition and the Morris water maze tests. Moreover, atorvastatin significantly attenuated Aβ1-42 accumulation and phosphorylation of tau (Ser396) in the hippocampus and prefrontal cortex of Tg APP/PS1 mice. In addition, atorvastatin treatment also increased phosphorylation of AKT, inhibited GSK3β activity by increasing phosphorylation of GSK3β (Ser9) and decreasing the beta-site APP cleaving enzyme 1 (BACE1) expression. These results indicated that the memory ameliorating effect of atorvastatin may be, in part, by regulation the AKT/GSK3β signaling which may contribute to down-regulation of Aβ1-42 and tau hyperphosphorylation.


Alzheimer’s disease Beta amyloid Tau AKT/GSK3β signaling Beta -site APP cleaving enzyme 1 Atorvastatin 



This work was supported by National Natural Science Foundation of China (No. 81201050; No.81271209; No.81371224; No.81541087); Natural Science Foundation of Zhejiang province (No.LQ12H09001); Natural Science Foundation of Ningbo (No. 2012A610249); The Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University (to Junfang Zhang) and Zhejiang “Climbing Program” (PD2013104). This project is also sponsored by K.C. Wong Magna funded at Ningbo University.


  1. Ali T, Kim MO (2015) Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3β pathway in the mouse hippocampus. J Pineal Res 59(1):47–59CrossRefPubMedGoogle Scholar
  2. Aplin AE, Gibb GM, Jacobsen JS, Gallo JM, Anderton BH (1996) In vitro phosphorylation of the cytoplasmic domain of the amyloid precursor protein by glycogen synthase kinase-3beta. J Neurochem 67(2):699–707CrossRefPubMedGoogle Scholar
  3. Bao XQ, Li N, Wang T, Kong XC, Tai WJ, Sun H, Zhang D (2013) FLZ alleviates the memory deficits in transgenic mouse model of Alzheimer’s disease via decreasing beta-amyloid production and tau hyperphosphorylation. PLoS One 8(11), e78033CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barage SH, Sonawane KD (2015) Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 52:1–18CrossRefPubMedGoogle Scholar
  5. Bettermann K, Arnold AM, Williamson J, Rapp S, Sink K, Toole JF, Carlson MC, Yasar S, Dekosky S, Burke GL (2012) Statins, risk of dementia, and cognitive function: secondary analysis of the ginkgo evaluation of memory study. J Stroke Cerebrovasc Dis 21(6):436–44CrossRefPubMedPubMedCentralGoogle Scholar
  6. Biallosterski BT, Prickaerts J, Rahnama’i MS, de Wachter S, van Koeveringe GA, Meriaux C (2015) Changes in voiding behavior in a mouse model of Alzheimer’s disease. Front Aging Neurosci 7:160CrossRefPubMedPubMedCentralGoogle Scholar
  7. Butterfield DA (2011) Atorvastatin and Aβ(1–40): not as simple as cholesterol reduction in brain and relevance to Alzheimer disease. Exp Neurol 228(1):15–18CrossRefPubMedGoogle Scholar
  8. Castri P, Iacovelli L, De Blasi A, Giubilei F, Moretti A, Tari Capone F, Nicoletti F, Orzi F (2007) Reduced insulin-induced phosphatidylinositol-3-kinase activation in peripheral blood mononuclear leucocytes from patients with Alzheimer’s disease. Eur J Neurosci 26(9):2469–2472CrossRefPubMedGoogle Scholar
  9. Cedazo-Mínguez A, Ismail MA, Mateos L (2011) Plasma cholesterol and risk for late-onset Alzheimer’s disease. Expert Rev Neurother 11(4):495–498CrossRefPubMedGoogle Scholar
  10. Deng J, Habib A, Obregon DF, Barger SW, Giunta B, Wang YJ, Hou H, Sawmiller D, Tan J (2015) Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3β signaling pathway. J Neurochem 135(3):630–637CrossRefPubMedGoogle Scholar
  11. Dionisio PA, Amaral JD, Ribeiro MF, Lo AC, D’Hooge R, Rodrigues CM (2015) Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset. Neurobiol Aging 36(1):228–240CrossRefPubMedGoogle Scholar
  12. Duan Y, Dong S, Gu F, Hu Y, Zhao Z (2012) Advances in the pathogenesis of Alzheimer’s disease: focusing on tau-mediated neurodegeneration. Transl Neurodegener 1(1):24CrossRefPubMedPubMedCentralGoogle Scholar
  13. Duka V, Lee JH, Credle J, Wills J, Oaks A, Smolinsky C, Shah K, Mash DC, Masliah E, Sidhu A (2013) Identification of the sites of tau hyperphosphorylation and activation of tau kinases in synucleinopathies and Alzheimer’s diseases. PLoS One 8(9), e75025CrossRefPubMedPubMedCentralGoogle Scholar
  14. Durairajan SS, Liu LF, Lu JH, Chen LL, Yuan Q, Chung SK, Huang L, Li XS, Huang JD, Li M (2012) Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol Aging 33(12):2903–2919CrossRefPubMedGoogle Scholar
  15. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31(1):47–59CrossRefPubMedGoogle Scholar
  16. Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG (2015) Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Front Cell Neurosci 9:191PubMedPubMedCentralGoogle Scholar
  17. Ghasemi R, Moosavi M, Zarifkar A, Rastegar K, Maghsoudi N (2015) The interplay of Akt and ERK in Aβ toxicity and insulin-mediated protection in primary hippocampal cell culture. J Mol Neurosci 57(3):325–334CrossRefPubMedGoogle Scholar
  18. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hernández F, Gómez de Barreda E, Fuster-Matanzo A, Lucas JJ, Avila J (2010) GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol 223(2):322–325CrossRefPubMedGoogle Scholar
  20. Huang HC, Tang D, Xu K, Jiang ZF (2014) Curcumin attenuates amyloid-β-induced tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells involving PTEN/Akt/GSK-3β signaling pathway. J Recept Signal Transduct Res 34(1):26–37CrossRefPubMedGoogle Scholar
  21. Javadi-Paydar M, Rayatnia F, Fakhraei N, Zakeri M, Mirazi N, Norouzi A, Dehpour AR (2011) Atorvastatin improved scopolamine-induced impairment in memory acquisition in mice: involvement of nitric oxide. Brain Res 1386:89–99CrossRefPubMedGoogle Scholar
  22. Kim HG, Park G, Lim S, Park H, Choi JG, Jeong HU, Kang MS, Lee MK, Oh MS (2015) Mori Fructus improves cognitive and neuronal dysfunction induced by beta-amyloid toxicity through the GSK-3β pathway in vitro and in vivo. J Ethnopharmacol 171:196–204CrossRefPubMedGoogle Scholar
  23. Kumar P, Jha NK, Jha SK, Ramani K, Ambasta RK (2015) Tau phosphorylation, molecular chaperones, and ubiquitin E3 ligase: clinical relevance in Alzheimer’s disease. J Alzheimers Dis 43(2):341–361PubMedGoogle Scholar
  24. Kurata T, Miyazaki K, Kozuki M, Panin VL, Morimoto N, Ohta Y, Nagai M, Ikeda Y, Matsuura T, Abe K (2011) Atorvastatin and pitavastatin improve cognitive function and reduce senile plaque and phosphorylated tau in aged APP mice. Brain Res 1371:161–170CrossRefPubMedGoogle Scholar
  25. Kurinami H, Sato N, Shinohara M, Takeuchi D, Takeda S, Shimamura M, Ogihara T, Morishita R (2008) Prevention of amyloid beta-induced memory impairment by fluvastatin, associated with the decrease in amyloid beta accumulation and oxidative stress in amyloid beta injection mouse model. Int J Mol Med 21(5):531–537PubMedGoogle Scholar
  26. Lappegård KT, Pop-Purceleanu M, van Heerde W, Sexton J, Tendolkar I, Pop G (2013) Improved neurocognitive functions correlate with reduced inflammatory burden in atrial fibrillation patients treated with intensive cholesterol lowering therapy. J Neuroinflammation 10:78CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liang B, Duan BY, Zhou XP, Gong JX, Luo ZG (2010) Calpain activation promotes BACE1 expression, amyloid precursor protein processing, and amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J Biol Chem 285(36):27737–27744CrossRefPubMedPubMedCentralGoogle Scholar
  28. Liu XH, Geng Z, Yan J, Li T, Chen Q, Zhang QY, Chen ZY (2015) Blocking GSK3β-mediated dynamin1 phosphorylation enhances BDNF-dependent TrkB endocytosis and the protective effects of BDNF in neuronal and mouse models of Alzheimer’s disease. Neurobiol Dis 74:377–3791CrossRefPubMedGoogle Scholar
  29. Lu D, Goussev A, Chen J, Pannu P, Li Y, Mahmood A, Chopp M (2004) Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma 21(1):21–32CrossRefPubMedGoogle Scholar
  30. Lu F, Li X, Suo AQ, Zhang JW (2010) Inhibition of tau hyperphosphorylation and beta amyloid production in rat brain by oral administration of atorvastatin. Chin Med J (Engl) 123(14):1864–1870Google Scholar
  31. Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, Zhang M, Yang Y, Cai F, Woodgett J, Song W (2013) Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 123(1):224–235CrossRefPubMedPubMedCentralGoogle Scholar
  32. McGuinness B, Passmore P (2010) Can statins prevent or help treat Alzheimer’s disease? J Alzheimers Dis 20(3):925–933PubMedGoogle Scholar
  33. McKee AC, Carreras I, Hossain L, Ryu H, Klein WL, Oddo S, LaFerla FM, Jenkins BG, Kowall NW, Dedeoglu A (2008) Ibuprofen reduces Abeta, hyperphosphorylated tau and memory deficits in Alzheimer mice. Brain Res 1207:225–236CrossRefPubMedPubMedCentralGoogle Scholar
  34. Métais C, Brennan K, Mably AJ, Scott M, Walsh DM, Herron CE (2014) Simvastatin treatment preserves synaptic plasticity in AβPPswe/PS1dE9 mice. J Alzheimers Dis 39(2):315–329PubMedGoogle Scholar
  35. Musiek ES, Holtzman DM (2015) Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat Neurosci 18(6):800–806CrossRefPubMedGoogle Scholar
  36. Notkola IL, Sulkava R, Pekkanen J, Erkinjuntti T, Ehnholm C, Kivinen P, Tuomilehto J, Nissinen A (1998) Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiology 17(1):14–20CrossRefPubMedGoogle Scholar
  37. Ott S, Henkel AW, Henkel MK, Redzic ZB, Kornhuber J, Wiltfang J (2011) Pre-aggregated Aβ1-42 peptide increases tau aggregation and hyperphosphorylation after short-term application. Mol Cell Biochem 349(1–2):169–177CrossRefPubMedGoogle Scholar
  38. Piermartiri TC, Vandresen-Filho S, de Araújo HB, Martins WC, Dal’agnolo D, Stroeh E, Carqueja CL, Boeck CR, Tasca CI (2009) Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 16(2):106–115CrossRefPubMedGoogle Scholar
  39. Reiserer RS, Harrison FE, Syverud DC, McDonald MP (2007) Impaired spatial learning in the APPSwe + PSEN1DeltaE9 bigenic mouse model of Alzheimer’s disease. Genes Brain Behav 6(1):54–65CrossRefPubMedGoogle Scholar
  40. Reiss AB, Wirkowski E (2007) Role of HMG-CoA reductase inhibitors in neurological disorders: progress to date. Drugs 67(15):2111–2120CrossRefPubMedGoogle Scholar
  41. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651CrossRefPubMedPubMedCentralGoogle Scholar
  42. Roy A, Jana M, Kundu M, Corbett GT, Rangaswamy SB, Mishra RK, Luan CH, Gonzalez FJ, Pahan K (2015) HMG-CoA reductase inhibitors bind to PPARα to upregulate neurotrophin expression in the brain and improve memory in mice. Cell Metab 22(2):253–265CrossRefPubMedGoogle Scholar
  43. Ryder J, Su Y, Ni B (2004) Akt/GSK3beta serine/threonine kinases: evidence for a signalling pathway mediated by familial Alzheimer’s disease mutations. Cell Signal 16(2):187–200CrossRefPubMedGoogle Scholar
  44. Selkoe DJ (2001) Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 3(1):75–80PubMedGoogle Scholar
  45. Selley ML (2005) Simvastatin prevents 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced striatal dopamine depletion and protein tyrosine nitration in mice. Brain Res 1037(1–2):1–6CrossRefPubMedGoogle Scholar
  46. Shinohara M, Sato N, Kurinami H, Takeuchi D, Takeda S, Shimamura M, Yamashita T, Uchiyama Y, Rakugi H, Morishita R (2010) Reduction of brain beta-amyloid (Abeta) by fluvastatin, a hydroxymethylglutaryl-CoA reductase inhibitor, through increase in degradation of amyloid precursor protein C-terminal fragments (APP-CTFs) and Abeta clearance. J Biol Chem 285(29):22091–22102CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sparks DL, Sabbagh M, Connor D, Soares H, Lopez J, Stankovic G, Johnson-Traver S, Ziolkowski C, Browne P (2006) Statin therapy in Alzheimer’s disease. Acta Neurol Scand Suppl 185:78–86CrossRefPubMedGoogle Scholar
  48. Stancu IC, Vasconcelos B, Terwel D, Dewachter I (2014) Models of β-amyloid induced Tau-pathology: the long and “folded” road to understand the mechanism. Mol Neurodegener 9:51CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sui HJ, Zhang LL, Liu Z, Jin Y (2015) Atorvastatin prevents Aβ oligomer-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting Tau cleavage. Acta Pharmacol Sin 36(5):553–564CrossRefPubMedGoogle Scholar
  50. Tendolkar I, Enajat M, Zwiers MP, van Wingen G, de Leeuw FE, van Kuilenburg J, Bouwels L, Pop G, Pop-Purceleanu M (2012) One-year cholesterol lowering treatment reduces medial temporal lobe atrophy and memory decline in stroke-free elderly with atrial fibrillation: evidence from a parallel group randomized trial. Int J Geriatr Psychiatry 27(1):49–58CrossRefPubMedGoogle Scholar
  51. Tiwari SK, Seth B, Agarwal S, Yadav A, Karmakar M, Gupta SK, Choubey V, Sharma A, Chaturvedi RK (2015) Ethosuximide induces hippocampal neurogenesis and reverses cognitive deficits in amyloid-β toxin induced Alzheimer’s rat model via PI3K/Akt/Wnt/β-catenin pathway. J Biol Chem 290(47):28540–28558CrossRefPubMedGoogle Scholar
  52. Tschäpe JA, Hartmann T (2006) Therapeutic perspectives in Alzheimer’s disease. Recent Pat CNS Drug Discov 1(1):119–127CrossRefPubMedGoogle Scholar
  53. Vassar R (2014) BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther 6(9):89CrossRefPubMedPubMedCentralGoogle Scholar
  54. Waters DD (2005) Safety of high-dose atorvastatin therapy. Am J Cardiol 96(5A):69F–75FCrossRefPubMedGoogle Scholar
  55. Zeng Y, Zhang J, Zhu Y, Zhang J, Shen H, Lu J, Pan X, Lin N, Dai X, Zhou M, Chen X (2015) Tripchlorolide improves cognitive deficits by reducing amyloid β and upregulating synapse-related proteins in a transgenic model of Alzheimer’s Disease. J Neurochem 133(1):38–52CrossRefPubMedGoogle Scholar
  56. Zhang YY, Fan YC, Wang M, Wang D, Li XH (2013) Atorvastatin attenuates the production of IL-1β, IL-6, and TNF-α in the hippocampus of an amyloid β1-42-induced rat model of Alzheimer’s disease. Clin Interv Aging 8:103–110PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dongsheng Zhou
    • 1
    • 2
  • Huaxia Liu
    • 3
  • Chenli Li
    • 2
    • 4
  • Fangyan Wang
    • 4
  • Yaosheng Shi
    • 1
    • 2
  • Lingjiang Liu
    • 1
    • 2
  • Xin Zhao
    • 2
    • 4
  • Aiming Liu
    • 2
    • 4
  • Junfang Zhang
    • 2
    • 5
  • Chuang Wang
    • 2
    • 5
  • Zhongming Chen
    • 1
    • 2
  1. 1.Ningbo Kangning HospitalNingboPeople’s of Republic China
  2. 2.Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboPeople’s of Republic China
  3. 3.School of NursingTaishan Medical UniversityTaianPeople’s of Republic China
  4. 4.Zhejiang Provincial Key Laboratory of PathophysiologyNingbo University School of MedicineNingboPeople’s of Republic China
  5. 5.Department of PathophysiologyWenzhou Medical UniversityWenzhouPeople’s of Republic China

Personalised recommendations