Skip to main content
Log in

Phenylalanine induces oxidative stress and decreases the viability of rat astrocytes: possible relevance for the pathophysiology of neurodegeneration in phenylketonuria

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of phenylalanine on oxidative stress and some metabolic parameters in astrocyte cultures from newborn Wistar rats. Astrocytes were cultured under four conditions: control (0.4 mM phenylalanine concentration in the Dulbecco’s Modified Eagle Medium (DMEM) solution), Phe addition to achieve 0.5, 1.0 or 1.5 mM final phenylalanine concentrations. After 72 h the astrocytes were separated for the biochemical measurements. Overall measure of mitochondrial function by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell viability measured by lactate dehydrogenase (LDH) assays indicated that phenylalanine induced cell damage at the three concentrations tested. The alteration on the various parameters of oxidative stress indicated that phenylalanine was able to induce free radicals production. Therefore, our results strongly suggest that Phe at concentrations usually found in PKU induces oxidative stress and consequently cell death in astrocytes cultures. Considering the importance of the astrocytes for brain function, it is possible that these astrocytes alterations may contribute to the brain damage found in PKU patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15(5):542–548

    Article  CAS  PubMed  Google Scholar 

  • Arstall MA, Bailey C, Gross WL, Bak M, Balligand JL, Kelly RA (1998) Reversible S-nitrosation of creatine kinase by nitric oxide in adult rat ventricular myocytes. J Mol Cell Cardiol 30(5):979–988

    Article  CAS  PubMed  Google Scholar 

  • Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    CAS  PubMed  Google Scholar 

  • Burmistrov SO, Mashek OP, Kotin AM (1992) The action of acute alcoholic intoxication on the antioxidant system and creatine kinase activity in the brain of rat embryos. Eksp Klin Farmakol 55(5):54–56

    CAS  PubMed  Google Scholar 

  • Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CMD (2003) Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci 21(2):111–116

    Article  CAS  PubMed  Google Scholar 

  • De Andrade RB, Gemelli T, Rojas DB, Funchal C, Dutra-Filho CS, Wannmacher CMD (2012) Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats. Mol Cell Biochem 364(1–2):253–261

    Article  CAS  PubMed  Google Scholar 

  • De Franceschi ID, Rieger E, Vargas AP, Rojas DB, Campos AG, Rech VC, et al. (2013) Effect of leucine administration to female rats during pregnancy and lactation on oxidative stress and enzymes activities of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Neurochem Res 38(3):632–643

    Article  PubMed  Google Scholar 

  • Dickinson DA, Moellering DR, Iles KE, Patel RP, Levonen A-L, Wigley A, et al. (2003) Cytoprotection against oxidative stress and the regulation of glutathione synthesis. Biol Chem 384(4):527–537

    Article  CAS  PubMed  Google Scholar 

  • Dzeja PP (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206(12):2039–2047

    Article  CAS  PubMed  Google Scholar 

  • Dzeja PP, Vitkevicius KT, Redfield MM, Burnett JC, Terzic A (1999) Adenylate kinase-catalyzed phosphotransfer in the myocardium : increased contribution in heart failure. Circ Res 84(10):1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A (2002) Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci 99(15):10156–10161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feillet F, Agostoni C (2010) Nutritional issues in treating phenylketonuria. J Inherit Metab Dis 33(6):659–664

    Article  CAS  PubMed  Google Scholar 

  • Feksa LR, Cornelio AR, Rech VC, Dutra-Filho CS, Wyse ATS, Wajner M, et al. (2002) Alanine prevents the reduction of pyruvate kinase activity in brain cortex of rats subjected to chemically induced hyperphenylalaninemia. Neurochem Res 27(9):947–952

    Article  CAS  PubMed  Google Scholar 

  • Feksa LR, Cornelio A, Dutra-Filho CS, Wyse ATDS, Wajner M, Wannmacher CMD (2005) The effects of the interactions between amino acids on pyruvate kinase activity from the brain cortex of young rats. Int J Dev Neurosci 23(6):509–514

    Article  CAS  PubMed  Google Scholar 

  • Fuller S, Steele M, Münch G (2010) Activated astroglia during chronic inflammation in alzheimer’s disease–do they neglect their neurosupportive roles? Mutat Res 690(1–2):40–49

    Article  CAS  PubMed  Google Scholar 

  • Gemelli T, de Andrade RB, Rojas DB, Bonorino NF, Mazzola PN, Tortorelli LS, et al. (2013) Effects of β-alanine administration on selected parameters of oxidative stress and phosphoryltransfer network in cerebral cortex and cerebellum of rats. Mol Cell Biochem 380(1–2):161–170

    Article  CAS  PubMed  Google Scholar 

  • Gilbert HF (1984) Redox control of enzyme activities by thiol/disulfide exchange. Methods Enzymol 107:330–351

    Article  CAS  PubMed  Google Scholar 

  • Gottfried C, Valentim L, Salbego C, Karl J, Wofchuk ST, Rodnight R (1999) Regulation of protein phosphorylation in astrocyte cultures by external calcium ions: specific effects on the phosphorylation of glial fibrillary acidic protein (GFAP), vimentin and heat shock protein 27 (HSP27). Brain Res 833(2):142–149

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35(5):1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Hanley WB (2004) Adult phenylketonuria. Am J Med 117(8):590–595

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Peng L, Dienel G (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249

    Article  CAS  PubMed  Google Scholar 

  • Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    Article  CAS  PubMed  Google Scholar 

  • Joseph MH, Marsden CA (1986) Amino acids and small peptides. in HPLC of Small Peptides, Oxford, pp. 13–27

  • Kalsner LR, Rohr FJ, Strauss KA, Korson MS, Levy HL (2001) Tyrosine supplementation in phenylketonuria: diurnal blood tyrosine levels and presumptive brain influx of tyrosine and other large neutral amino acids. J Pediatr 139(3):421–427

    Article  CAS  PubMed  Google Scholar 

  • Kolling J, Scherer EBS, Siebert C, Hansen F, Torres FV, Scaini G, et al. (2013) Homocysteine induces energy imbalance in rat skeletal muscle: is creatine a protector? Cell Biochem Funct 31(7):575–584

    CAS  PubMed  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231

    Article  CAS  PubMed  Google Scholar 

  • Leite MC, Galland F, de Souza DF, Guerra MC, Bobermin L, Biasibetti R, et al. (2009) Gap junction inhibitors modulate S100B secretion in astrocyte cultures and acute hippocampal slices. J Neurosci Res 7(11):2439–2446

    Article  Google Scholar 

  • Leong SF, Lai JC, Lim L, Clark JB (1981) Energy-metabolizing enzymes in brain regions of adult and aging rats. J Neurochem 37(6):1548–1556

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr L, Randall RJ (1951) Protein measurement with the folin fenol. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Marklund SL, Adolfsson R, Gottfries CG, Winblad B (1985) Superoxide dismutase isoenzymes in normal brains and in brains from patients with dementia of alzheimer type. J Neurol Sci 67(3):319–325

    Article  CAS  PubMed  Google Scholar 

  • Masella R, Di Benedetto R, Varì R, Filesi C, Giovannini C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16(10):577–586

    Article  CAS  PubMed  Google Scholar 

  • Mazzocco MM, Yannicelli S, Nord AM, van Doorninck W, Davidson-Mundt AJ, Greene CL (1992) Cognition and tyrosine supplementation among school-aged children with phenylketonuria. Am J Dis Child 146(11):1261–1264

    CAS  PubMed  Google Scholar 

  • Mitchell JJ, Trakadis YJ, Scriver CR (2011) Phenylalanine hydroxylase deficiency. Genitourin Med 13(8):697–707

    Article  CAS  Google Scholar 

  • Obara M, Szeliga M, Albrecht J (2008) Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem Int 52(6):905–919

    Article  CAS  PubMed  Google Scholar 

  • Pietz J (1998) Neurological aspects of adult phenylketonuria. Curr Opin Neurol 11(6):679–688

    Article  CAS  PubMed  Google Scholar 

  • Pietz J, Landwehr R, Kutscha A, Schmidt H, de Sonneville L, Trefz FK (1995) Effect of high-dose tyrosine supplementation on brain function in adults with phenylketonuria. J Pediatr 127(6):936–943

    Article  CAS  PubMed  Google Scholar 

  • Rojas DB, de Andrade RB, Gemelli T, Oliveira LS, Campos AG, Dutra-Filho CS, et al. (2012) Effect of histidine administration to female rats during pregnancy and lactation on enzymes activity of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Metab Brain Dis 27(4):595–603

    Article  CAS  PubMed  Google Scholar 

  • Sitta A, Vanzin CS, Biancini GB, Manfredini V, De OAB, Wayhs CAY, et al. (2011) Evidence that L -carnitine and selenium supplementation reduces oxidative stress in phenylketonuric patients. Cell Mol Neurobiol 31(3):429–436

    Article  CAS  PubMed  Google Scholar 

  • Slemmer JE, Shacka JJ, Sweeney MI, Weber JT (2008) Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem 15(4):404–14.

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Hanley WB, Clarke JT, Klim P, Schoonheyt W, Austin V, et al. (1998) Randomised controlled trial of tyrosine supplementation on neuropsychological performance in phenylketonuria. Arch Dis Child 78(2):116–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilaseca MA, Lambruschini N, Gutiérrez A, Fusté E, Gassió R (2010) Quality of dietary control in phenylketonuric patients and its relationship with general intelligence. Nutr Hosp 25(1):60–66

    CAS  PubMed  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolayt K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster D, Wildgoose J (2010) Tyrosine supplementation for phenylketonuria. Cochrane Database Syst Rev 8:CD001507

    PubMed  Google Scholar 

  • Weeds AG, Noda L (1968) Amino acid sequences around the thiol groups of myokinase. Biochem J 107:311–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the research grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clovis Milton Duval Wannmacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preissler, T., Bristot, I.J., Costa, B.M.L. et al. Phenylalanine induces oxidative stress and decreases the viability of rat astrocytes: possible relevance for the pathophysiology of neurodegeneration in phenylketonuria. Metab Brain Dis 31, 529–537 (2016). https://doi.org/10.1007/s11011-015-9763-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9763-0

Keywords

Navigation