Advertisement

Metabolic Brain Disease

, Volume 31, Issue 3, pp 529–537 | Cite as

Phenylalanine induces oxidative stress and decreases the viability of rat astrocytes: possible relevance for the pathophysiology of neurodegeneration in phenylketonuria

  • Thales Preissler
  • Ivi Juliana Bristot
  • Bruna May Lopes Costa
  • Elissa Kerli Fernandes
  • Elenara Rieger
  • Vanessa Trindade Bortoluzzi
  • Itiane Diehl de Franceschi
  • Carlos Severo Dutra-Filho
  • José Claudio Fonseca Moreira
  • Clovis Milton Duval Wannmacher
Original Article

Abstract

The aim of this study was to investigate the effects of phenylalanine on oxidative stress and some metabolic parameters in astrocyte cultures from newborn Wistar rats. Astrocytes were cultured under four conditions: control (0.4 mM phenylalanine concentration in the Dulbecco’s Modified Eagle Medium (DMEM) solution), Phe addition to achieve 0.5, 1.0 or 1.5 mM final phenylalanine concentrations. After 72 h the astrocytes were separated for the biochemical measurements. Overall measure of mitochondrial function by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell viability measured by lactate dehydrogenase (LDH) assays indicated that phenylalanine induced cell damage at the three concentrations tested. The alteration on the various parameters of oxidative stress indicated that phenylalanine was able to induce free radicals production. Therefore, our results strongly suggest that Phe at concentrations usually found in PKU induces oxidative stress and consequently cell death in astrocytes cultures. Considering the importance of the astrocytes for brain function, it is possible that these astrocytes alterations may contribute to the brain damage found in PKU patients.

Keywords

Astrocytes Phenylalanine Oxidative stress 

Notes

Acknowledgments

This work was supported by the research grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  2. Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15(5):542–548CrossRefPubMedGoogle Scholar
  3. Arstall MA, Bailey C, Gross WL, Bak M, Balligand JL, Kelly RA (1998) Reversible S-nitrosation of creatine kinase by nitric oxide in adult rat ventricular myocytes. J Mol Cell Cardiol 30(5):979–988CrossRefPubMedGoogle Scholar
  4. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352PubMedGoogle Scholar
  5. Burmistrov SO, Mashek OP, Kotin AM (1992) The action of acute alcoholic intoxication on the antioxidant system and creatine kinase activity in the brain of rat embryos. Eksp Klin Farmakol 55(5):54–56PubMedGoogle Scholar
  6. Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CMD (2003) Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci 21(2):111–116CrossRefPubMedGoogle Scholar
  7. De Andrade RB, Gemelli T, Rojas DB, Funchal C, Dutra-Filho CS, Wannmacher CMD (2012) Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats. Mol Cell Biochem 364(1–2):253–261CrossRefPubMedGoogle Scholar
  8. De Franceschi ID, Rieger E, Vargas AP, Rojas DB, Campos AG, Rech VC, et al. (2013) Effect of leucine administration to female rats during pregnancy and lactation on oxidative stress and enzymes activities of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Neurochem Res 38(3):632–643CrossRefPubMedGoogle Scholar
  9. Dickinson DA, Moellering DR, Iles KE, Patel RP, Levonen A-L, Wigley A, et al. (2003) Cytoprotection against oxidative stress and the regulation of glutathione synthesis. Biol Chem 384(4):527–537CrossRefPubMedGoogle Scholar
  10. Dzeja PP (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206(12):2039–2047CrossRefPubMedGoogle Scholar
  11. Dzeja PP, Vitkevicius KT, Redfield MM, Burnett JC, Terzic A (1999) Adenylate kinase-catalyzed phosphotransfer in the myocardium : increased contribution in heart failure. Circ Res 84(10):1137–1143CrossRefPubMedGoogle Scholar
  12. Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A (2002) Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci 99(15):10156–10161CrossRefPubMedPubMedCentralGoogle Scholar
  13. Feillet F, Agostoni C (2010) Nutritional issues in treating phenylketonuria. J Inherit Metab Dis 33(6):659–664CrossRefPubMedGoogle Scholar
  14. Feksa LR, Cornelio AR, Rech VC, Dutra-Filho CS, Wyse ATS, Wajner M, et al. (2002) Alanine prevents the reduction of pyruvate kinase activity in brain cortex of rats subjected to chemically induced hyperphenylalaninemia. Neurochem Res 27(9):947–952CrossRefPubMedGoogle Scholar
  15. Feksa LR, Cornelio A, Dutra-Filho CS, Wyse ATDS, Wajner M, Wannmacher CMD (2005) The effects of the interactions between amino acids on pyruvate kinase activity from the brain cortex of young rats. Int J Dev Neurosci 23(6):509–514CrossRefPubMedGoogle Scholar
  16. Fuller S, Steele M, Münch G (2010) Activated astroglia during chronic inflammation in alzheimer’s disease–do they neglect their neurosupportive roles? Mutat Res 690(1–2):40–49CrossRefPubMedGoogle Scholar
  17. Gemelli T, de Andrade RB, Rojas DB, Bonorino NF, Mazzola PN, Tortorelli LS, et al. (2013) Effects of β-alanine administration on selected parameters of oxidative stress and phosphoryltransfer network in cerebral cortex and cerebellum of rats. Mol Cell Biochem 380(1–2):161–170CrossRefPubMedGoogle Scholar
  18. Gilbert HF (1984) Redox control of enzyme activities by thiol/disulfide exchange. Methods Enzymol 107:330–351CrossRefPubMedGoogle Scholar
  19. Gottfried C, Valentim L, Salbego C, Karl J, Wofchuk ST, Rodnight R (1999) Regulation of protein phosphorylation in astrocyte cultures by external calcium ions: specific effects on the phosphorylation of glial fibrillary acidic protein (GFAP), vimentin and heat shock protein 27 (HSP27). Brain Res 833(2):142–149CrossRefPubMedGoogle Scholar
  20. Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35(5):1147–1150CrossRefPubMedGoogle Scholar
  21. Hanley WB (2004) Adult phenylketonuria. Am J Med 117(8):590–595CrossRefPubMedGoogle Scholar
  22. Hertz L, Peng L, Dienel G (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249CrossRefPubMedGoogle Scholar
  23. Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603CrossRefPubMedGoogle Scholar
  24. Joseph MH, Marsden CA (1986) Amino acids and small peptides. in HPLC of Small Peptides, Oxford, pp. 13–27Google Scholar
  25. Kalsner LR, Rohr FJ, Strauss KA, Korson MS, Levy HL (2001) Tyrosine supplementation in phenylketonuria: diurnal blood tyrosine levels and presumptive brain influx of tyrosine and other large neutral amino acids. J Pediatr 139(3):421–427CrossRefPubMedGoogle Scholar
  26. Kolling J, Scherer EBS, Siebert C, Hansen F, Torres FV, Scaini G, et al. (2013) Homocysteine induces energy imbalance in rat skeletal muscle: is creatine a protector? Cell Biochem Funct 31(7):575–584PubMedGoogle Scholar
  27. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231CrossRefPubMedGoogle Scholar
  28. Leite MC, Galland F, de Souza DF, Guerra MC, Bobermin L, Biasibetti R, et al. (2009) Gap junction inhibitors modulate S100B secretion in astrocyte cultures and acute hippocampal slices. J Neurosci Res 7(11):2439–2446CrossRefGoogle Scholar
  29. Leong SF, Lai JC, Lim L, Clark JB (1981) Energy-metabolizing enzymes in brain regions of adult and aging rats. J Neurochem 37(6):1548–1556CrossRefPubMedGoogle Scholar
  30. Lowry OH, Rosebrough NJ, Farr L, Randall RJ (1951) Protein measurement with the folin fenol. J Biol Chem 193:265–275PubMedGoogle Scholar
  31. Marklund SL, Adolfsson R, Gottfries CG, Winblad B (1985) Superoxide dismutase isoenzymes in normal brains and in brains from patients with dementia of alzheimer type. J Neurol Sci 67(3):319–325CrossRefPubMedGoogle Scholar
  32. Masella R, Di Benedetto R, Varì R, Filesi C, Giovannini C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16(10):577–586CrossRefPubMedGoogle Scholar
  33. Mazzocco MM, Yannicelli S, Nord AM, van Doorninck W, Davidson-Mundt AJ, Greene CL (1992) Cognition and tyrosine supplementation among school-aged children with phenylketonuria. Am J Dis Child 146(11):1261–1264PubMedGoogle Scholar
  34. Mitchell JJ, Trakadis YJ, Scriver CR (2011) Phenylalanine hydroxylase deficiency. Genitourin Med 13(8):697–707CrossRefGoogle Scholar
  35. Obara M, Szeliga M, Albrecht J (2008) Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem Int 52(6):905–919CrossRefPubMedGoogle Scholar
  36. Pietz J (1998) Neurological aspects of adult phenylketonuria. Curr Opin Neurol 11(6):679–688CrossRefPubMedGoogle Scholar
  37. Pietz J, Landwehr R, Kutscha A, Schmidt H, de Sonneville L, Trefz FK (1995) Effect of high-dose tyrosine supplementation on brain function in adults with phenylketonuria. J Pediatr 127(6):936–943CrossRefPubMedGoogle Scholar
  38. Rojas DB, de Andrade RB, Gemelli T, Oliveira LS, Campos AG, Dutra-Filho CS, et al. (2012) Effect of histidine administration to female rats during pregnancy and lactation on enzymes activity of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Metab Brain Dis 27(4):595–603CrossRefPubMedGoogle Scholar
  39. Sitta A, Vanzin CS, Biancini GB, Manfredini V, De OAB, Wayhs CAY, et al. (2011) Evidence that L -carnitine and selenium supplementation reduces oxidative stress in phenylketonuric patients. Cell Mol Neurobiol 31(3):429–436CrossRefPubMedGoogle Scholar
  40. Slemmer JE, Shacka JJ, Sweeney MI, Weber JT (2008) Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem 15(4):404–14.CrossRefPubMedGoogle Scholar
  41. Smith ML, Hanley WB, Clarke JT, Klim P, Schoonheyt W, Austin V, et al. (1998) Randomised controlled trial of tyrosine supplementation on neuropsychological performance in phenylketonuria. Arch Dis Child 78(2):116–121CrossRefPubMedPubMedCentralGoogle Scholar
  42. Vilaseca MA, Lambruschini N, Gutiérrez A, Fusté E, Gassió R (2010) Quality of dietary control in phenylketonuric patients and its relationship with general intelligence. Nutr Hosp 25(1):60–66PubMedGoogle Scholar
  43. Wallimann T, Wyss M, Brdiczka D, Nicolayt K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40CrossRefPubMedPubMedCentralGoogle Scholar
  44. Webster D, Wildgoose J (2010) Tyrosine supplementation for phenylketonuria. Cochrane Database Syst Rev 8:CD001507PubMedGoogle Scholar
  45. Weeds AG, Noda L (1968) Amino acid sequences around the thiol groups of myokinase. Biochem J 107:311–312CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Thales Preissler
    • 1
  • Ivi Juliana Bristot
    • 1
  • Bruna May Lopes Costa
    • 1
  • Elissa Kerli Fernandes
    • 1
  • Elenara Rieger
    • 1
  • Vanessa Trindade Bortoluzzi
    • 1
  • Itiane Diehl de Franceschi
    • 1
  • Carlos Severo Dutra-Filho
    • 1
  • José Claudio Fonseca Moreira
    • 1
  • Clovis Milton Duval Wannmacher
    • 1
  1. 1.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations